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Abstract. Blanchet introduced certain singular cobordisms to fix the func-
toriality of Khovanov homology. In this paper we introduce graded algebras

consisting of such singular cobordisms à la Blanchet. As the main result we

explicitly describe these algebras in algebraic terms using the combinatorics of
arc diagrams.
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1. Introduction

For an arbitrary field K we consider the gl2-web algebra W, which we call web
algebra for short. (For the reason why we like to call it gl2-web algebra instead
of sl2-web algebra see in the introduction of [14].) This is a graded K-algebra
which naturally appears as an algebra of singular cobordisms. In particular, it is
of topological origin. The underlying category of singular cobordisms was used
in [2] by Blanchet to fix the functoriality of Khovanov homology. Its objects are
certain trivalent graphs and its morphisms are singular cobordisms whose boundary
are such trivalent graphs. We call these singular cobordisms gl2-foams (or foams
for short). Note that Blanchet’s category is a sign modified version of the original
cobordism category which describes Khovanov homology and which was for instance
used by Bar-Natan in his formulation of Khovanov homology, see [1]. The fact
that such a twist in the definition of Khovanov homology solves the functoriality
leaves the question whether this could also be fixed algebraically using the original
construction of Khovanov involving his arc algebra, see [18].

We therefore suggest here to study a certain signed (with highly non-trivial
sign modifications) version AF of Khovanov’s original algebra, which we call the
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Blanchet-Khovanov algebra. This is a graded K-algebra defined diagrammatically
via explicit multiplication rules on a distinguished set of basis vectors similar to the
family of algebras from [4] or [12].

The main result of the paper is then that AF is an algebraic counterpart of W:

Theorem. There is an equivalence of graded, K-linear 2-categories

Φ : W-biModpgr

∼=−→ AF-biModpgr

induced by an isomorphism of graded algebras

Φ : W◦ → AF.

(Where W◦ is a certain subalgebra of W.) �

This provides a direct link between the topological and the algebraic point of
view. As a consequence, computations (which are hard to do in practice on the
topological side) can be done on the algebraic side, whereas the associativity (a
non-trivial fact on the algebraic side) is clear from the topological point of view.

The set-up in more details. In his pioneering work [18], Khovanov introduced the
so-called arc algebra Hm. One of his main purposes was to extend his celebrated
categorification of the Jones polynomial [17] to tangles. To a given tangle with
2m bottom boundary points and 2m′ top boundary points one associates a certain
complex of graded Hm-Hm′ -bimodules. He showed that the chain homotopy equiva-
lence class of this complex is an invariant of the tangle. Moreover, taking the tensor
product with a certain Hm-module from the left and a certain Hm′ -module from the
right produces a complex which is still an invariant. On the level of Grothendieck
groups this invariant descends to the Kauffman bracket of the tangle.

In this set-up it makes sense to ask if cobordisms between tangles correspond to
natural transformations between bimodules. Or said in other words, whether
there is a 2-functor from the 2-category of tangles to a certain 2-category of
H =

⊕
m∈Z≥0

Hm-bimodules. This is often called functoriality.

In a series of papers [4], [5], [6], [7] and [8] a generalization AΛ of the arc algebra
was studied revealing that Khovanov’s arc algebra has, left aside its knot theoretical
origin, interesting representation theoretical, algebraic geometrical and combinatorial
properties. These algebras AΛ were defined using an algebraic approach via the
combinatorics of arc diagrams, i.e. certain diagrams consisting of embedded lines in
R2 inspired by the diagrams for Temperley-Lieb algebras.

This series of results has led to several variations and generalizations of Kho-
vanov’s original formulation, utilized in a large body of work by several researchers
(including the authors of this paper), e.g. an sl3-variation considered in [27], [32], [31]
and [36], and an sln-variation studied in [26] and [37], all of them having relations
to (cyclotomic) KL-R algebras as in [20] or [33], and link homologies in the sense
of Khovanov and Rozansky [21]. There is also the gl1|1-variation developed in [34]
with relations to the Alexander polynomial as well as a type D-version introduced
in [11] and [12] with connections to the representation theory of Brauer’s centralizer
algebras and orthosymplectic Lie superalgebras, see e.g. [13].

A fact we like to stress about the sl3/sln-variations is that their graded 2-cate-
gories of biprojective, finite-dimensional modules are equivalent to certain graded
2-categories of sl3/sln-foams, the analogues of Bar-Natan’s cobordism category [1]
studied e.g. in [19], [24], [28] and [29] from the viewpoint of link homologies. (We
note hereby that such a topological description for the type D-version was found
in [15], providing, in some sense, the first “foamy description” outside of type A.)

We like to stress that Khovanov’s original construction as well as Bar-Natan’s re-
formulation from [1] are not functorial, but are functorial up to signs, see [1], [16], [30]
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or [35]. It became clear that Bar-Natan cobordisms miss some subtle extra signs
(see for example [10] for the first fix of functoriality using “disoriented” cobordisms).

A solution to this problem, that is of key interest for us, was provided by Blanchet
in [2]. He formulated Khovanov’s link homology using certain singular cobordisms,
that we call (gl2-)foams, which, by construction, include highly non-trivial signs fixing
the functoriality of Khovanov’s link homology. Moreover, Blanchet’s formulation fits
neatly into the framework of graded 2-representations of the categorified quantum
group in the sense of [20], as it was shown in [24].

Using Blanchet’s construction it makes sense to define “foamy” versions W~k of
Khovanov’s arc algebra, which we call (gl2-)web algebras. We set W =

⊕
~k∈bl�W~k.

The web algebras W~k and W are graded K-algebras defined using Blanchet’s singular
cobordisms and the multiplication is given by composition of singular cobordisms
(for our conventions see Section 2). The signs within this multiplication are quite
sophisticated, e.g. even merges (which are quite easy in the formulations of [4]
and [12]) can come with a sign.

Unfortunately calculating in W~k and W is very hard. Indeed, it is not even clear
what a basis of W~k or W is - left aside the question how to rewrite an arbitrary foam
in terms of some basis. Thus, the main purpose of this paper is to give algebraic
counterparts of W~k and W, denoted by AF

Λ and AF =
⊕

Λ∈bl� A
F
Λ where these

questions about bases are easy. We call the algebraic counterparts, which are built
up using certain combinatorics of arc diagrams, Blanchet-Khovanov algebras.

The proof of our main theorem relies on the rather subtle Theorem 4.18 which
needs careful treatment of all involved signs. The whole Subsection 4.5 is devoted to
its proof. Our main theorem clarifies algebraically the deficiency in the original theory.
For brevity, we stop our investigation here although several natural questions remain
open, e.g. a direct representation theoretic construction of Blanchet-Khovanov
algebras, see Remark 4.20.

To keep the paper self-contained we start by a rather detailed exposition of the
main ingredients and players adapted to the main purpose of the paper.

Conventions used throughout.

Convention 1.1. Let K denote a field of arbitrary characteristic. (We sometimes
need to work with K(q) for a formal parameter q. All notions below are similarly
defined in this case.) An algebra always means a non-necessarily finite-dimensional,
non-necessarily unital K-algebra A. We do not assume that such A’s are associative
and it will be a non-trivial fact that all A’s which we consider are actually associative.
Given two algebras A and B, then an A-B-bimodule is a K-vector space M with a left
action of A and a right action of B in the usual sense. If A = B, then we also write
A-bimodule for short. We call an A-B-bimodule M biprojective, if it is projective as
a left A-module and right B-module (such finitely generated bimodules are called
sweet in [18, Subsection 2.6]). We denote the category of locally finite-dimensional
A-bimodules by A-biMod, i.e. the category of A-bimodules M such that eMe′ is
finite-dimensional for any two primitive idempotents e, e′ ∈ A. Diagrammatic left
(or right) actions will be given by acting on the bottom (or top). N

Convention 1.2. By a graded algebra we mean an algebra A which decomposes
into graded pieces A =

⊕
i∈ZAi such that AiAj ⊂ Ai+j for all i, j ∈ Z. Given two

graded algebras A and B, we study (and only consider) graded A-B-bimodules, i.e.
A-B-bimodules M =

⊕
i∈ZMi such that AiMjBk ⊂Mi+j+k for all i, j, k ∈ Z. We

also set Mi{s} = Mi−s for s ∈ Z (thus, positive integers shift up).
If A is a graded algebra and M is a graded A-bimodule, then M obtained from

M by forgetting the grading is in A-biMod.
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Given such A-bimodules M,N , then

(1) HomA-biMod(M,N) =
⊕
s∈Z

Hom0(M,N{s}).

Here Hom0 means all degree-preserving A-homomorphisms, i.e. f(Mi) ⊂ Ni. N

Convention 1.3. We consider three diagrammatic calculi in this paper: gl2-webs
(webs for short) in the sense of [9] and [23], foams whose definition is motivated
from [2] and [19], and arc diagrams in the sense of [4] and [6]. Our reading convention
for all of these is from bottom to top and from left to right. We often illustrate
local pieces only; the diagram then is meant to be the identity or arbitrary outside
of the displayed part (which one will be clear from the context). N

Remark 1.4. We use colors in this paper. It is only necessary to distinguish colors
for webs and foams. For the readers with a black-and-white version: we illustrate
colored web edges using dashed lines, while colored foam facets appear shaded. N

Acknowledgements: We like to thank David Rose and Nathalie Wahl for helpful
conversations, and Paul Wedrich and the referee for helpful comments. M.E. and
D.T. thank the whiteboard in their office for many helpful illustrations.

2. gl2-foams and gl2-web algebras

In this section we introduce the foam 2-category F and the web algebra W in
the spirit of Khovanov [18], but using foams à la Blanchet [2].

2.1. Webs, foams and TQFTs. We start by recalling the definition of a web. For

this purpose, we denote by bl the set of all vectors ~k = (ki)i∈Z ∈ {0, 1, -1, 2, -2}Z
with ki = 0 for |i| � 0. Abusing notation, we also sometimes write ~k = (ka, . . . , kb)

for some fixed part of ~k (with a < b ∈ Z) where it is to be understood that all
non-displayed entries are zero. By convention, the empty vector is the unique vector

containing only zeros. We consider ~k ∈ bl as a set of discrete labeled points in
R× {±1} (or in R× {0}) by putting the symbols ki at position (i,±1) (or (i, 0)).
We denote by bl ⊂ bl the subset of all vectors with entries from {0, 1, 2} only.

Definition 2.1. A web is an embedded labeled, oriented, trivalent graph which can
be obtained by gluing (whenever this makes sense and the labels fit) or juxtaposition
of finitely many (possibly zero) of the following pieces:

1

1

,

-1

-1

,

2

2

,

-2

-2

,

2

1 1

,

2

1 1

,

-2

-1 -1

,

-2

-1 -1

1 -1

,

1-1

,

1 -1

,

1-1

,

2 -2

,

2-2

,

2 -2

,

2-2
(2)

(Hence, this includes the empty web.) We assume that webs are embedded in
R × [−1, 1] such that each edge starts/ends either in a trivalent vertex or at the
boundary of the strip at the points (i,±1). We assume that the points at (i,±1) are

labeled 1, -1, 2 or -2. In particular, these webs have distinguished bottom ~k and top
~l boundary which we will throughout denote from left to right by ~k = (ka, . . . , kb)

and ~l = (la′ , . . . , lb′) where ki is the label at (i,−1) and li is the label at (i, 1).
Edges come in two different version, i.e. ordinary edges which are only allowed

to have boundary points labeled 1 or -1, and phantom edges which are only allowed
to have boundary points labeled 2 or -2. As in (2), we draw phantom edges dashed
(and colored); one should think of them as “non-existing”.



THE BLANCHET-KHOVANOV ALGEBRAS 5

We denote the set consisting of all webs with bottom boundary ~k and top

boundary ~l by HomF(~k,~l) (for a reason that will become clear later). Given ~k ∈ bl,

we denote by 1~k ∈ HomF(~k,~k) the identity web on ~k. N

Remark 2.2. For our purposes it will be mostly sufficient to consider webs in a
“highest weight setup”, i.e. only upwards pointing webs (see also Subsection 2.3).
In particular, we do not need the labels -1 and -2 much in this paper. Still, all
construction from this and the next subsection can be done in a more flexible setup
using topological webs, which are however not necessary for our purposes. N

By a surface we mean a marked, orientable, compact surface with possible
finitely many boundary components and with finitely many connected components.
Additionally, by a trivalent surface we understand the same as in [19, Subsection 3.1],
i.e. certain embedded, marked, singular cobordisms whose boundaries are webs.

Precisely, fix the following data denoted by S:

(I) A surface S with connected components divided into two sets {So
1 , . . . , S

o
r}

and {Sp
1 , . . . , S

p
r′}. (The former are called ordinary surfaces and the latter

are called phantom surfaces.)
(II) The boundary components of S are partitioned into triples (Co

i , C
o
j , C

p
k )

such that each triple contains precisely one boundary component Cp
k of a

phantom surface.
(III) The three circles Co

i , C
o
j and Cp

k in each triple are identified via diffeomor-

phisms ϕij : Co
i → Co

j and ϕjk : Co
j → Cp

k .
(IV) A finite (possible empty) set of markers per connected components.

Definition 2.3. Let S be as above. The closed, singular trivalent surface fc = fSc
attached to S is the CW-complex obtained as the quotient of S by the identifications
ϕij and ϕjk. We call all such fc’s closed pre-foams (following [19]) and their markers
dots. A triple (Co

i , C
o
j , C

p
k ) becomes one circle in fc which we call a singular seam,

while the interior of the connected components So
1 , . . . , S

o
r and Sp

1 , . . . , S
p
r′ are facets

of fc, called ordinary facets respectively phantom facets. We embed these pre-foams
into R3 in such a way that the three annuli glued to a singular seam can be oriented.
We additionally choose orientations on the singular seams, compare to (3). N

Example 2.4. Consider two spheres with two punctures respectively one puncture.
The sphere with one puncture is assumed to be a phantom sphere (we color phantom
facets in what follows).

So
1

Co
1 C

o
2

Sp
1

Cp
3

glue
//

f

Then the pre-foam on the right is obtained by identifying the three boundary circles.
(We have also chosen an orientation of the singular seam.) Another example of a
closed pre-foam is given below in the proof of Lemma 2.13 (where we leave it to the
reader to identify the precise labels). N

The pre-foams we have constructed so far are all closed. We will need non-closed
pre-foams as well. To this end, we follow [19, Subsection 3.3] and consider a plane
P ∼= R2 ⊂ R3. We say that P intersects a closed pre-foam fc generically, if P ∩ fc
is a non-oriented web (seen as a topological space).
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Definition 2.5. Let P±1
xy be the xy-plane in R3 (embedded such that the third

coordinate is ±1). A (non-closed) pre-foam f is the intersection of R2× [−1, 1] with
some closed pre-foam fc such that P±1

xy intersects fc generically, and the intersection
is a web as in Definition 2.1. We see such pre-foam f as a singular cobordism between
P−1
xy ∩ fc (bottom, source) and P+1

xy ∩ fc (top, target) embedded in R2 × [−1, 1].
Moreover, there is an evident composition g ◦ f via gluing and rescaling. Similarly,
we construct pre-foams embedded in R× [−1, 1]× [−1, 1] with vertical boundary
components. These vertical boundary components should be the boundary of the
webs at the bottom/top times [−1, 1]. We consider such pre-foams modulo isotopies
in R × [−1, 1] × [−1, 1] which fix the horizontal boundary as well as the vertical
boundary, and the condition that generic slices are webs. N

We call pre-foam parts ordinary, if they do not contain singular seams or phantom
facets, and we call pre-foam parts ghostly, if they only contain phantom facets.

Example 2.6. Pre-foams can be seen as singular surfaces (with oriented, singular
seams) in R× [−1, 1]× [−1, 1] such that the bottom boundary and the top boundary
are webs with facets colored as follows:

:

1

1

→
1

1

and :

2

2

→
2

2

The leftmost facet is an ordinary facet. Whereas the rightmost facet is a phantom
facet, and the reader might think of it as “non-existing” (similar to a phantom edge)
- they only encode signs. The singularities of f are all locally of the following form
(where the other orientations of the seams are also allowed)

(3) :

2

1 1

→
2

1 1

and :

2

1 1

→
2

1 1

(Note that we consider webs in a “monoidal” way. Thus, we do not have to relate
the orientations of facets/seam to the orientations of webs as e.g. in [2, Section 1].)
Such pre-foams can carry dots that freely move around its facets:

•
=

•
and

•
=

•
N

Remark 2.7. Pre-foams are considered modulo boundary preserving isotopies that
do preserve the condition that each generic slice is a web. These isotopies form a
finite list: isotopies coming from the two cobordism theories associated to the two
different types of facets (see for example [22, Section 1.4]) and isotopies coming
from isotopies of the singular seams seen as tangles in R2 × [−1, 1]. N

To work with the 2-category of foams it will be enough (for our purposes) to
consider its image under a certain (singular) TQFT functor defined by Blanchet [2].
Recall that equivalence classes of TQFTs for surfaces (i.e. a monoidal functor Z
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from the category of two-dimensional cobordisms to the category of K-vector spaces)
are in one-to-one correspondence with isomorphism classes of (finite-dimensional,
associative) commutative Frobenius algebras. The reader unfamiliar with these
notions might want to consult Kock’s book [22] for a detailed account. Given a
Frobenius algebra A corresponding to a TQFT ZA, then the association is as follows.
To a disjoint union of m circles one associates the m-fold tensor product A⊗m. To
a cobordism Σ with distinguished incoming and outgoing boundary components
consisting of, let us say, m and m′ circles, we assign a K-linear map from A⊗m to
A⊗m′ . Hereby the usual cup/cap respectively pants cobordisms correspond to the
unit, counit, multiplication and comultiplication maps. These are the basic pieces
of every cobordism. Then the TQFT assigns to Σ a K-linear map

ZA(Σ): A⊗m → A⊗m′ ,

which is obtained by decomposing Σ into basic pieces.
The commutative Frobenius algebras we need are

(4) Ao = K[X]/(X2), Ap = K

with induced multiplications, counits εo,p(·) and comultiplications ∆o,p(·) given via

εo(1) = 0, εo(X) = 1, εp(1) = −1,

∆o(1) = 1⊗X +X ⊗ 1, ∆o(X) = X ⊗X, ∆p(1) = −1⊗ 1.

Thus, we have the traces

tro(1⊗ 1) = tro(X ⊗X) = 0, tro(1⊗X) = tro(X ⊗ 1) = 1, trp(1⊗ 1) = −1.(5)

We associate the Frobenius algebra Ao to the ordinary parts, and the Frobenius
algebra Ap to the phantom parts of a pre-foam f using the usual notion of a TQFT
functor, but extended to surfaces marked with dots via multiplication by X or −1:

(6) •
ZAo7−→ ·X : Ao → Ao, •

ZAp7−→ ·(−1) : Ap → Ap.

(Note that pre-foams without singular seams and markers are surfaces in the usual
sense.) By the universal construction given in [3], it is no problem to extend the
usual construction of TQFTs to the marked setup using (6). We leave the details
to the reader.

Example 2.8. If we view a K-linear map φ : K→ A⊗mo,p as φ(1) ∈ A⊗mo,p , then

ZAo7−→ 1 ∈ Ao, •
ZAo7−→ X ∈ Ao,

ZAp7−→ 1 ∈ Ap.(7)

Here we have from left to right ιo, (·X) ◦ ιo and ιp as maps. These are sometimes
called (marked) units. The counits εo,p are obtained by flipping the pictures. N

Note that the values of the non-closed surfaces can be determined by closing
them in all possible ways using (7) and its dual. Here and throughout, we say for
short that a relation a = b (of formal K-linear combinations of marked surfaces) lies
in the kernel of a TQFT functor Z, if Z(a) = Z(b) as K-linear maps. (Similarly
later on for singular TQFT functors as defined below.)
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Lemma 2.9. The following ordinary sphere relations, the ghostly sphere relation
and the cyclotomic relations

= 0,

•
= 1, = −1,(8)

• • = 0, • = −1.(9)

as well as the following ordinary and ghostly neck cutting relations

=

•
+

•
and = −(10)

are in the kernel of TAo
(ordinary) respectively of TAp

(ghostly). �

Proof. Via direct calculation. For instance, the ordinary respectively ghostly neck
cutting relations decompose the identity map as id = (·X) ◦ ιo ◦ εo + ιo ◦ εo ◦ (·X)
respectively id = −ιp ◦ εp with units ιo,p and counits εo,p as in (7). �

The neck cutting relations (10) give a topological interpretation of a dot as a
shorthand notation for ( 1

2 -times) a handle, see also [1, (4)].

2.2. Blanchet’s singular TQFT construction. The following definition follows
the construction given by Blanchet, see [2, Subsection 1.5].

We want to construct a monoidal functor T on the category whose objects are
webs with values in finite-dimensional K-vector spaces. To this end, let pF denote the
category whose objects are webs and whose morphisms are pre-foams (composition
is gluing of pre-foams). We view pF as a monoidal category by juxtaposition of
webs and pre-foams. Moreover, we define for a, b, c, d ∈ K two maps:

αAo : Ao ⊗Ao → Ao, (a+bX)⊗ (c+ dX) 7→ (a+ bX)(c− dX),

αAp : Ap → Ao, 1 7→ 1.
(11)

Definition 2.10. Let ZAo
and ZAp

denote the TQFTs associated to Ao and Ap

from (4). Given a closed pre-foam fc, let ḟc = fo∪̇fp be the pre-foam obtained by
cutting fc along the singular seams (of which we assume to have m in total). Here
fo is the surface which in fc is attached to the ordinary parts and fp is the surface
which in fc is attached to phantom parts. Note that the boundary of fo splits into
σ+
i and σ−i for each i ∈ {1, . . . ,m}. Which one is which depends on the orientation

of the singular seam: use the right hand rule with the index finger pointing in the
direction of the singular seam and the middle finger pointing in direction of the
attached phantom facet, then the thumb points in direction of σ+

i . In contrast, fp

has only boundary components σi for each i ∈ {1, . . . ,m}. Now

ZAo(fo) ∈
m⊗
i=1

(ZAo(σ+
i )⊗ZAo(σ−i )), ZAp(fp) ∈

m⊗
i=1

ZAp(σi).

Let tro : Ao → K be as in (5), and let αAo
, αAp

be as in (11). Then we set

T(fc) = (tro)⊗2m(α⊗mAo
(ZAo

(fo))⊗ α⊗mAp
(ZAp

(fp))) ∈ K⊗2m ∼= K.

This gives a well-defined value T(fc) ∈ K for all closed pre-foams fc. N



THE BLANCHET-KHOVANOV ALGEBRAS 9

A crucial insight of Blanchet is that this extends to pre-foams:

Theorem 2.11. The construction from Definition 2.10 can be extended to a
monoidal functor T : pF→ K-Vect. (We call such a functor a singular TQFT.) �

Proof. This follows from the universal construction from [3]. That is, the only thing
one really needs to check for this is that the K-vector spaces constructed via the
universal construction are finite-dimensional. This is not a priori clear, but also not
hard to show. First observe that the evaluation given above ensures the case for the
K-vector space associated to the empty web. By using the relations found below,
one can show an analog of Lemma 4.3, which in turn provides recursively that the
K-vector space associated to any web is finite-dimensional. �

Note the following properties of pre-foams f , which follow by construction.

(I) The topological reduction f̂ obtained by removing all phantom facets of f is
the cobordism theory corresponding to Ao from (4).

(II) The phantom f̌ obtained by removing all 1-labeled facets of f is the cobor-
dism theory corresponding to Ap from (4).

Hence, the relations from (8), (9) and (10) are also in the kernel of the functor T
(for all possible orientations of the boundary webs).

Lemma 2.12. Let f̃ be the pre-foam obtained from a pre-foam f by reversing the
orientation of a singular seam. Then f + f̃ = 0 is in the kernel of T . �

Proof. Switching the orientation of a singular seam swaps the attached parts of σ+
1

and σ−1 . In particular, it swaps the two copies of Ao in the source of αAo from (11)
and hence, produces an extra sign (we note that the case b = d = 0 is killed by
applying the trace εo in the formula for T(fc)). �

Lemma 2.13. Let a, b ∈ Z≥0. The sphere relations, i.e.

•

•

a

b

=


1, if a = 1, b = 0,

−1, if a = 0, b = 1,

0, otherwise,

(12)

are in the kernel of T . (We call such pre-foams spheres.) �

Proof. We prove the case a = 0, b = 1. The others are similar and omitted for
brevity. Decompose fc into (t=thumb, i=index finger, m=middle finger)

•

t

i

m //

•

fo
fp
σ1

σ+
1

σ−
1

Now, because of the assignment in (7), we have TAo
(fo) = 1⊗X and TAp

(fp) = 1.
Thus, αAo

(TAo
(fo)) = −X and αAp

(TAp
(fp)) = 1, both considered in Ao. Applying

the trace tro to −X ⊗ 1 gives −1 as in (12). �
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Lemma 2.14. The bubble removals (a “sphere” in a phantom plane; the top dots
are meant to be on the front facets and the bottom dots on the back facets)

•
= = −

•
(13)

= 0 =
•

•
(14)

are in the kernel of T . The neck cutting relation

=

•

−

•

(15)

(with top dot on the front facet and bottom dot on the back facet) is also in the
kernel of T . Furthermore, the (left) squeezing relation

= −(16)

(there is also a similar right squeezing relation) and the dot migrations

•
= − • and

•
= − •(17)
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as well as the ordinary-to-phantom neck cutting relations (in the leftmost picture the
upper closed circle is an ordinary facet, while the lower closed circle is a phantom
facet, and vice versa for the rightmost picture)

= − and = −(18)

(we have omitted the orientations of the circle-shaped webs) are also in the kernel
of T . (We only need these in the following. But there are also similar relations with
different orientations of the webs.) �

The leftmost situation in (15) is called a cylinder - as all local parts of pre-foams

f such that the corresponding part in f̂ is a cylinder. Note that the squeezing
relation (16) enables us to use the neck cutting (15) on any such cylinders.

Proof. We only prove the left equation in (18). First note that we have to consider
all possible ways to close the non-closed pre-foam on the left-hand and on the
right-hand side of the equation. We consider the closing

•

and −

•
since all other possibilities give zero (as the reader might want to check). By (8),
the right-hand closed pre-foams evaluate to −(1 · (−1)). Now:

•

(10)
=

•

•
+

•

•

(12)
=

•

•

The bottom sphere evaluates to −1 because of (12). Moreover, performing the same
steps as in the proof of Lemma 2.13, we see that the top sphere also evaluates to
−1. Thus, the left-hand and the right-hand side evaluate to the same value. This
shows that the first equation in (18) is in the kernel of T . The other relations are
verified similarly, see also [2, Lemma 1.3] or [24, Subsection 3.1]. �
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If we define a grading on the TQFT-modules by setting deg(1) = −1 and
deg(X) = 1, then the TQFT ZAo

respects the grading, where the degree of a
cobordism Σ is given by deg(Σ) = −χ(Σ) + 2 · dots. Here χ(Σ) is the topological
Euler characteristic of Σ, that is, the number of vertices minus the number of
edges plus the number of faces of Σ seen as a CW complex, and “dots” is the total
number of dots. Additionally, we can see the TQFT ZAp

as being trivially graded.
Motivated by this we define the following.

Definition 2.15. Given a pre-foam f , we define its degree

deg(f) = −χ(f̂) + 2 · dots + 1
2vbound,

where vbound is the total number of vertical boundary components. If f̂ is the

empty cobordism, then, by convention, χ(f̂) = 0. N

Example 2.16. For example,

deg

 •


= 2, deg




= 1.

The leftmost pre-foam is called a dotted cup (the name will become clear in
Lemma 2.27), while the rightmost pre-foam is called a saddle (there are also
saddles obtained by flipping the picture upside down). Furthermore, we have

deg




= −1 = deg




for the pre-foams called cup respectively cap. N

The 2-category we like to study is cooked up from T as follows.

Definition 2.17. Let F be the K-linear 2-category given by:

• The objects are all ~k ∈ bl.

• The morphisms spaces HomF(~k,~l) are as in Definition 2.1.
• The 2-morphisms spaces 2HomF(u, v) for two webs u, v is the K-linear span

of all pre-foams with bottom boundary u and top boundary v.
• Vertical compositions g ◦f of pre-foams by stacking g on top of f , horizontal

composition g⊗ f by putting g to the right of f (whenever those operations
make sense).
• We take everything modulo the relations from (8), (9) and (10), as well as

the relations found in Lemmas 2.12, 2.13 and 2.14.

Since the relations are degree preserving, F is a graded, K-linear 2-category by
taking the degree from Definition 2.15. Similarly, the “highest weight” 2-subcategory
F of F is the full 2-subcategory consisting of only webs with upwards pointing edges.
(We will only consider F in the following.) N

We call the 2-morphisms in F (or in F) foams. Moreover, all notions we had for
pre-foams can be adapted to the setting of foams and we do so in the following.
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Note that the objects and the morphisms of F can be seen as a K(q)-linear category

(by considering the spaces HomF(~k,~l) as K(q)-linear vector spaces whose basis are

the webs in HomF(~k,~l)) which we denote by Web.

2.3. An action of the quantum group U̇q(gl∞). We denote by U̇q(gl∞) the

K(q)-linear category whose objects are given by ~k ∈ bl and whose morphisms are

generated by pairwise orthogonal idempotents 1~k, and by E
(r)
i 1~k and F

(r)
i 1~k for

~k ∈ bl, i ∈ Z and r ∈ Z>0 (the generators E
(r)
i 1~k and F

(r)
i 1~k are called the divided

powers) modulo some relations which are analogs of the relations in the quantum
group Uq(gl∞) (see [25, Chapter 23]). We note that there exists a unique 1~l such

that 1~lE
(r)
i 1~k 6= 0 and 1~lF

(r)
i 1~k 6= 0. This enable us to write 1~k only on one side of

any expression. Now, there is a K(q)-linear functor

ΦWeb
Howe : U̇q(gl∞)→Web

given on objects by ΦWeb
Howe(~k) = ~k, and on morphisms by ΦWeb

Howe(1~k) = 1~k and (where
we use a simplified, “rectangular”, notation for webs):

Ei1~k
ΦWeb

Howe7−→
2 1

1 2

i

,

1 0

0 1

i

,

1 1

0 2

i

,

2 0

1 1

i

, E
(2)
i 1~k

ΦWeb
Howe7−→

2 0

0 2

i

Fi1~k
ΦWeb

Howe7−→
21

12

i

,

0 1

1 0

i

,

1 1

2 0

i

,

0 2

1 1

i

, F
(2)
i 1~k

ΦWeb
Howe7−→

0 2

2 0

i

(19)

Here the generators Ei1~k, Fi1~k, E
(2)
i 1~k and F

(2)
i 1~k are sent to the local (between

strand i and i + 1) pictures above (we have displayed all possibilities depending

on ~k at position ki and ki+1). Moreover, all higher divided powers E
(r)
i 1~k, F

(r)
i 1~k

for r > 2 are sent to zero. We call webs that arise as ΦWeb
Howe(X), for X being any

composition of the 1~k, E
(r)
i 1~k, F

(r)
i 1~k generators, EF -generated, and, on the other

hand, webs F -generated, if X is any composition of only 1~k, F
(r)
i 1~k generators (in

both cases no coefficients from K(q) are allowed to occur). For details about the
functor ΦWeb

Howe we refer to [9, Section 5].

Example 2.18. If ~k = (0, 0, 1, 0, 2, 0, 1, 2, 0, 0), then E1E0E−1E2F01~k is sent to

0 0 1 0 2

0
0 1 2 0 0

0 0 1 1 1 1 1 1 0 0

Here the first entry 2 is assumed to be at position 0. N
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2.4. gl2-web algebras. Now we define the following “algebraic” version of F. To
this end, let ` ∈ Z≥0 and let ω` = (1, . . . , 1, 0, . . . , 0) with ` numbers equal to 1. Fix
~k and let Cup(~k) = HomF(2ω`,~k) and Cap(~k) = HomF(~k, 2ω`). (Thus, Cup(~k) = ∅
and Cap(~k) = ∅ if

∑
i∈Z ki 6= 2`.) Elements of these are called cup webs respectively

cap webs. For diagrams in the multiplication process of W described below, we need

cup-ray webs as well, i.e. elements of CupRay(~k) = HomF(ω`+`′ + ω`,~k) for ~k ∈ bl

(and similarly defined cap-ray webs).

Definition 2.19. Let u, v ∈ Cup(~k),~k ∈ bl. We denote by u(W\
~k
)v the space

2HomF(u, v). The web algebra W\
~k

for ~k ∈ bl and the (full) web algebra W\ are the

graded K-vector spaces

W\
~k

=
⊕

u,v∈Cup(~k)

u(W\
~k
)v, W\ =

⊕
~k∈bl

W\
~k
,

whose grading is induced by the grading in F. We consider these as graded algebras
with multiplication given by composition in F. N

Remark 2.20. Note that W\
~k

is defined via composition of foams and thus, forms a

graded, associative, unital algebra. Similarly for (the locally unital) algebra W\. N

Remark 2.21. Although new in this form, the algebras from Definition 2.19 are
of course inspired by Khovanov’s original arc algebras from [18]. Consequently, we
obtain that W~k is a graded Frobenius algebra (by copying [27, Theorem 3.9]). N

Definition 2.22. Denote by bl
� ⊂ bl the set of all ~k ∈ bl which have an even

number of entries 1. We call elements of bl� balanced. N

Remark 2.23. Clearly there are no cups respectively caps if ~k ∈ bl− bl
�. Hence,

W\
~k

= 0 iff ~k ∈ bl− bl
� or ~k = ∅. Consequently, we restrict ourselves to balanced ~k

in what follows. We note that the full set bl would be needed if one wants to study
generalized web algebras in the sense of [4] or [6]. N

There is an alternative way to define the web algebras which is the one we will
use later on. Thus, we make the following definition (and show below that it agrees
with the one from Definition 2.19). We denote by ∗ the involution on webs which
flips the diagrams upside down and reverses their orientations.

Definition 2.24. Let u, v ∈ Cup(~k),~k ∈ bl
�. We denote by u(W~k)v the space

2HomF(12ω`
, uv∗){d(~k)}, where d(~k) = ` −∑i∈Z ki(ki − 1). The web algebra W~k

for ~k ∈ bl
� and the (full) web algebra W are the graded K-vector spaces

W~k =
⊕

u,v∈Cup(~k)

u(W~k)v, W =
⊕
~k∈bl�

W~k.

We consider these as graded algebras with multiplication

(20) Mult : W~k ⊗W~k →W~k, f ⊗ g 7→Mult(f, g) = fg

using multiplication foams as follows. To multiply f ∈ u(W~k)v with g ∈ ṽ(W~k)w
stack the diagram ṽw∗ on top of uv∗ and obtain uv∗ṽw∗. Then fg = 0 if v 6= ṽ.
Otherwise, pick the leftmost cup-cap pair indicated in the picture to the left below
and perform a “surgery”

u

w

v∗

v saddle foam //

u

w

v∗

v
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where the saddle foam is locally of the following form (and the identity elsewhere)

(21)

This foam should be read as follows: start with f ∈ 2HomF(12ω`
, uv∗vw) and stack

on top of it a foam which is the identity at the bottom (u part) and top (w part) of
the web and the saddle in between. Repeat until no cup-cap pair as above remains.
This gives inductively rise to a multiplication foam (after the last surgery step we
collapse the webs and foams). Compare also to [27, Definition 3.3]. N

Note that each intermediate step in the multiplication from (20) is a web of the

form v∗v with v ∈ CapRay(~k) and the multiplication foam is zero or a foam in
HomF(uv∗vw∗, uw∗) (and thus, locally a foam in HomF(v∗v,1~k)). As a convention,

we consider u ∈ Cup(~k) as a web in R× [−1, 0], v∗ ∈ Cap(~k) as a web in R× [0, 1]

such that ~k ∈ R× {0} whenever we use this viewpoint on W. Similarly for cup-ray
and cap-ray webs.

Lemma 2.25. The multiplication is degree preserving. �

Proof. The saddles as in (21) are always of degree 1. These have two boundary
components labeled 1. Thus, the degree of all saddles within the multiplication

procedure and the shift by d(~k) sum up to zero. �

Example 2.26. An easy example illustrating the multiplication is

2

2

w∗

v

u

v∗

~k

~k

//

2

2

w∗

u

~k

~k

collapsing
//

2

2

w∗

u

~k(22)

where the reader should think about any foam f : 12ω1 → uv∗vw∗ sitting underneath.

The saddle is of degree 1 and thus, taking the shift d(~k) into account for ~k = (1, 1),
the multiplication foam is of degree zero. N

The following shows that Definitions 2.19 and 2.24 agree.

Lemma 2.27. We have W\
~k
∼= W~k and W\ ∼= W as graded algebras. �

Proof. Recall that the multiplication in W\
~k

is composition, while the multiplication

in W~k is given by multiplication foams. Thus, for the former we take foams
f ∈ 2HomF(u, v) and g ∈ 2HomF(v, w) and obtain a foam g ◦ f ∈ 2HomF(u,w),
while for the latter we take foams f ∈ 2HomF(12ω`

, uv∗) and g ∈ 2HomF(12ω`
, vw∗)
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and obtain a foam fg ∈ 2HomF(12ω`
, uw∗) (in case the multiplication is non-zero).

Now, the following “clapping of pictures” (as indicated by the arrows)

• !

•
and !

induces isomorphisms of K-vector spaces

2HomF(u,w) ∼= 2HomF(12ω`
, uw∗){d(~k)},

2HomF(v, v) ∼= 2HomF(v∗v,12ω`
){d(~k)}.

These are isomorphisms of graded K-vector spaces since the shift by d(~k) encodes
the vertical boundary components which are “lost” by the “clapping”. Moreover,

as indicated in the rightmost picture above, the multiplications in W\
~k

and W~k are

identified under this “clapping procedure”. This shows the isomorphism of graded
K-algebras. For more details the reader might also consult [27, Lemma 3.7]. �

As a direct consequence of Remark 2.20 and Lemma 2.27 we obtain in particular
the associativity of W~k:

Corollary 2.28. The map Mult : W~k ⊗W~k → W~k from Definition 2.24 is inde-
pendent of the order in which the surgeries are performed. This turns W~k into a
graded, associative, unital algebra. Similar for (the locally unital) algebra W. �

2.5. Web bimodules. We still consider only balanced ~k,~l ∈ bl
� in this subsection.

Definition 2.29. Given any web u ∈ HomF(~k,~l) (with boundaries ~k and ~l summing
up to 2`), we consider the W-bimodule

W(u) =
⊕

v∈Cup(~k),

w∈Cup(~l)

2HomF(12ω`
, vuw∗)

with left (bottom) and right (top) action of W as in Definition 2.24. We call such
W-bimodules W(u) web bimodules. N

Proposition 2.30. Let u ∈ HomF(~k,~l) be a web. Then the left (bottom) action
of W~k and the right (top) action of W~l on W(u) are well-defined and commute.
Hence, W(u) is a W~k -W~l -bimodule (and thus, a W-bimodule). �

Proof. Let u ∈ HomF(~k,~l). Then, by construction, the left (bottom) action of W~k
and the right (top) action of W~l commute since they are topologically “far apart”.
Hence, W(u) is indeed a W~k -W~l -bimodule (and thus, a W-bimodule). �

Note that, given two webs u, v ∈ HomF(~k,~l), then W(u) and W(v) could be
isomorphic even though u and v are different, see for example (35).

Proposition 2.31. The W-bimodules W(u) are graded biprojective W-bimodules,
with finite-dimensional subspaces for all pairs v, w. �

Proof. Clearly, they are graded, W-bimodules, but finite-dimensionality is not a
priori clear. It follows from the existence of a cup foam basis as in Subsection 4.3.
(More precisely, from Lemma 4.14.) They are also biprojective, because they are
direct summands of some W~k (of some W~l) as left (right) modules and for suitable
~k ∈ bl

� (or ~l ∈ bl
�). See also [27, Proposition 5.11]. �
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This proposition motivates the definition of the following 2-category which is one
of the main objects that we are going to study.

Definition 2.32. Given W as above, let W-biModpgr be the following 2-category:

• Objects are the various ~k ∈ bl
�.

• Morphisms are finite sums and tensor products (taken over the algebra W)
of W-bimodules W(u).
• The composition of W-bimodules is given by tensoring (over W).
• 2-morphisms are W-bimodule homomorphisms.
• The vertical composition of W-bimodule homomorphisms is the usual com-

position and the horizontal composition is given by tensoring (over W).

We consider W-biModpgr as a graded 2-category with 2-hom-spaces as in (1). N

3. Blanchet-Khovanov algebras

In this section we define the Blanchet-Khovanov algebra, following the framework
of [18] and [4], but with signs differing at a number of crucial places.

3.1. Combinatorics of arc diagrams. We start with the notion of weights and
blocks. These definitions are the same as in [4, Section 2] and, apart from the exact
definition of blocks, as in [12, Sections 2 and 3].

Definition 3.1. A (diagrammatical) weight is a sequence λ = (λi)i∈Z with entries
λi ∈ {◦,×, ∨, ∧}, such that λi = ◦ for |i| � 0. Two weights λ and µ are said to be
equivalent if one can obtain µ from λ by permuting some symbols ∧ and ∨ in λ. The
equivalence classes are called blocks. We denote by bl the set of blocks. N

To a block we assign a number of invariants.

Definition 3.2. Let Λ ∈ bl be a block. To Λ we associate its (well-defined) block
sequence seq(Λ) = (seq(Λ)i)i∈Z by taking any λ ∈ Λ and replacing the symbols ∧, ∨
by F. Moreover, we define up(Λ) respectively down(Λ) to be the total number of
∧’s respectively ∨’s in Λ where we count × as both, ∧ and ∨. N

Important for us is the following subset of blocks.

Definition 3.3. A block Λ ∈ bl is called balanced, if up(Λ) = down(Λ). We denote
by bl� ⊂ bl the set of balanced blocks. N

Remark 3.4. The Blanchet-Khovanov algebras will only be defined for balanced
blocks, while general blocks can be used to define a generalized version of these
algebras in the spirit of [4]. N

A cup diagram c is a finite collection of non-intersecting arcs inside R×[−1, 0] such
that each arc intersects the boundary exactly in its endpoints, and either connecting
two distinct points (i, 0) and (j, 0) with i, j ∈ Z (called a cup), or connecting one
point (i, 0) with i ∈ Z with a point on the lower boundary of R × [−1, 0] (called
a ray). Furthermore, each point in the boundary is endpoint of at most one arc.
Two cup diagrams are equal if the arcs contained in them connect the same points.
Similarly, a cap diagram d∗ is defined inside R × [0, 1]. By construction, one can
reflect a cup diagram c along the axis R×{0}, denote this operation by ∗, to obtain
a cap diagram c∗. Clearly, (c∗)∗ = c.

A cup diagram c (and similarly a cap diagram d∗) is compatible with a block
Λ ∈ bl if {(i, 0) | seq(Λ)i = F} = (R× {0}) ∩ c.

We will view a weight λ as labeling integral points, called vertices, of the horizontal
line R×{0} inside R× [−1, 0] and R× [0, 1], putting the symbol λi at position (i, 0).
Together with a cup diagram c this forms a new diagram cλ.
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Definition 3.5. We say that cλ is oriented if:

(I) An arc in c only contains vertices labeled by ∧ or ∨.
(II) The two vertices of a cup are labeled by exactly one ∧ and one ∨.

(III) Every vertex labeled ∧ or ∨ is contained in an arc.
(IV) It is not possible to find i < j such that λi = ∨, λj = ∧, and each are

contained in a ray. N

In the following, when depicting a composite diagram like cλ, we will omit the
line and only draw the labels obtained from λ.

Example 3.6. Consider the following diagrams.

(i)
∨ ∧ ∧ ∨ ∨

, (ii)
∨ ∧ ∧ ∧ ∨

, (iii)
∨ ∧ ∧ ∨ ∨

, (iv)
∨ ∧ ∧ ∨ ∧

The diagrams (i) and (iii) are oriented. Diagram (ii) is not oriented since condition
(II) is violated, while (iv) is not oriented because condition (IV) is not fulfilled. N

Similarly, a cap diagram d∗ together with a weight λ forms a diagram λd∗, which
is called oriented if dλ is oriented. A cup respectively a cap in such diagrams is
called anticlockwise (or clockwise), if its rightmost vertex is labeled ∧ (or ∨).

Putting a cap diagram d∗ on top of a cup diagram c such that they are connected
to the line R× {0} at the same points creates a circle diagram, denoted by cd∗. All
connected component of this diagram that do not touch the boundary of R× [−1, 1]
are called circles, all others are called lines. Together with λ ∈ Λ such that cλ and
λd∗ are oriented this forms an oriented circle diagram cλd∗.

Definition 3.7. We define the degree of an oriented cup diagram cλ, of an oriented
cap diagram λd∗ and of an oriented circle diagram cλd∗ as follows.

deg(cλ) = number of clockwise cups in cλ,

deg(λd∗) = number of clockwise caps in λd∗,

deg(cλd∗) = deg(cλ) + deg(λd∗).

(23)

Note that the degree is always non-negative. N

Example 3.8. In Example 3.6 above, diagram (i) has degree 1 (due to one clockwise
cup) and diagram (iii) has degree 0. N

Finally, we associate to each λ ∈ Λ a unique cup diagram, denoted by λ, via:

(I) Connect neighboring pairs ∨∧ with a cup, ignoring symbols of the type ◦
and × as well as symbols already connected. Repeat this process until there
are no more ∨’s to the left of any ∧.

(II) Put a ray under any remaining symbols ∨ or ∧.

It is an easy observation that λ always exists for a fixed λ. Furthermore, λ is the
(unique) orientation of λ, such that λλ has minimal degree. Each cup diagram c is
of the form λ for λ ∈ Λ, a block compatible with c.

Similarly we can define λ = λ∗, and, as before, in an oriented circle diagram λνµ
a circle C is said to be oriented anticlockwise if the rightmost vertex contained in
the circle is ∧ and clockwise in case its ∨. Two helpful facts about the degree of
oriented circle diagrams are summarized below.

Lemma 3.9. Fix a block Λ and λ, µ, ν ∈ Λ.

(a) The contribution to the degree of the arcs contained in a given circle C
inside an oriented circle diagram λνµ is equal to

deg(C) = (number of cups in C)± 1,

with +1, if the circle C is oriented clockwise and −1 otherwise.
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(b) If, in an oriented circle diagram λνµ, one changes the orientation such that
all vertices contained in exactly one circle C are changed, then the degree
increases by 2, if C was oriented anticlockwise, and decreases by 2, if C was
oriented clockwise. �

Proof. (a) is a special case of [12, Proposition 4.9] while (b) follows from (a). �

We conclude this part with the notions of distance and saddle width, which will
be important for spreading signs in the multiplication given below.

Definition 3.10. For i ∈ Z and a block Λ define the position of i as

pΛ(i) = |{j | j ≤ i, seq(Λ)j = F}|+ 2 |{j | j ≤ i, seq(Λ)j = ×}| .
For a cup or cap γ in a diagram connecting vertices (i, 0) and (j, 0) we define its
distance dΛ(γ) and saddle width sΛ(γ) by

dΛ(γ) = |pΛ(i)− pΛ(j)| respectively sΛ(γ) = 1
2 (dΛ(γ) + 1) .

For a ray γ set dΛ(γ) = 0. For a collection M = {γ1, . . . , γr} of distinct arcs (e.g. a
circle or sequence of arcs connecting two vertices) set

dΛ(M) =
∑

1≤k≤r
dΛ(γk).

The saddle width will be interpreted in Subsection 4.4 as the number of phantom
facets at the bottom of a saddle (e.g. s = 2 for the saddle from (21)).

We omit the subscript Λ, if no confusion can arise. N

3.2. The Blanchet-Khovanov algebras as graded K-vector spaces. Fix a
block Λ ∈ bl, and consider the basis set of oriented circle diagrams

B(Λ) = {λνµ | λνµ is oriented and λ, µ, ν ∈ Λ} .
This set is subdivided into smaller sets of the form λB(Λ)µ which are those diagrams
in B(Λ) which have λ as cup part and µ as cap part.

From now on, we restrict to circle diagrams that only contain cups and caps.
Formally this is done as follows: for a block Λ ∈ bl denote by Λ◦ the set of weights
λ such that λ only contains cups. Note that Λ◦ 6= ∅ iff Λ is balanced. Define

(24) B◦(Λ) = {λνµ | λνµ is oriented and λ, µ ∈ Λ◦, ν ∈ Λ} =
⋃

λ,µ∈Λ◦
λB(Λ)µ.

Definition 3.11. The Blanchet-Khovanov algebra AF
Λ attached to a block Λ ∈ bl�

and the (full) Blanchet-Khovanov algebra AF are the graded K-vector space

AF
Λ = 〈B◦(Λ)〉K =

⊕
(λνµ)∈B◦(Λ)

K(λνµ), AF =
⊕

Λ∈bl�
AF

Λ,

with multiplication mult given in Subsection 3.3. Denote also by λ(AF
Λ)µ the span

of the basis vectors inside λB(Λ)µ. N

Proposition 3.12. The map mult : AF
Λ⊗AF

Λ → AF
Λ given in Subsection 3.3 endows

AF
Λ with the structure of a graded, unital algebra with pairwise orthogonal, primitive

idempotents λ1λ = λλλ for λ ∈ Λ and unit 1 =
∑
λ∈Λ λ1λ. Similar for (the locally

unital) algebra AF. �

Proof. The maps multDl,Dl+1
are homogeneous of degree 0 by [12, Proposition 5.19],

since the proof is diagrammatic and independent of any signs or coefficients. The
proof that the λ1λ are idempotents is the same as in [12, Theorem 6.2], since
multiplying them only involves merges of non-nested circles, in which case the map
multDl,Dl+1

agrees with the one defined in [12, Section 5]. That they are pairwise
orthogonal and primitive is clear by definition. �
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Remark 3.13. Note that so far we do not know whether AF
Λ is associative. It

will follow from the identification of AF
Λ with W~k that mult is independent of

the chosen order in which the surgeries are performed and that AF
Λ is associative,

see Corollary 4.19. Alternatively, the independence from the chosen order and
associativity can be shown in the same spirit as [12, Theorem 5.34]. N

3.3. Multiplication of the Blanchet-Khovanov algebra. The multiplication
on AF

Λ is based on the one defined in [18] and used in [4]. We will first recall the
maps used in each step, which are the same as in [4] and afterwards go into details
about how we modify these maps with different sign choices.

For λ, µ, µ′, η ∈ Λ◦ we define a map mult : λ(AF
Λ)µ⊗µ′(AF

Λ)η → λ(AF
Λ)η as follows.

If µ 6= µ′ we declare the map to be identically zero. Thus, assume that µ = µ′,
and stack the diagram, without orientations, µη on top of the diagram λµ, creating
a diagram D0 = λµµη. In [12, Definition 5.1] such a diagram is called a stacked
circle diagram. Given such a diagram Dl, starting with l = 0, we construct below
a new diagram Dl+1 by choosing a certain symmetric pair of a cup and a cap in
the middle section. If r is the number of cups in µ, then this can be done a total
number of r times. We call this procedure a surgery at the corresponding cup-cap
pair. For each such step we define below a map multDl,Dl+1

. Observing that the
space of orientations of the final diagram Dr is equal to the space of orientations of
the diagram λη, we define

mult = multDr−1,Dr ◦ . . . ◦multD0,D1 : λ(AF
Λ)µ ⊗ µ′(A

F
Λ)η → λ(AF

Λ)η.

The global map mult is defined as the direct sum of all the ones defined here. In
order to make mult a priori well-defined, we always pick the leftmost available
cup-cap pair. Corollary 4.19 will finally ensure that this fixed choice is irrelevant.

3.3.1. The surgery procedure. To obtain Dl+1 from Dl = λc∗cη (for some cup
diagram c) choose the cup-cap pair with the leftmost endpoint in c∗c that can be
connected without crossing any arcs (this means that the cup and cap are not nested
inside any other arcs). Cut open the cup and the cap and stitch the loose ends
together to form a pair of vertical line segments, call this diagram Dl+1:

ji

Dl

//

ji

Dl+1

3.3.2. The map without signs. As in [18] and [4] the map multDl+1,Dl
, without any

additional signs only depends on how the components change when going from Dl

to Dl+1. The image of an orientation of Dl is constructed as follows in these cases
(where we always leave the orientations on non-interacting arcs fixed).

Merge. If two circles, say C1 and C2, are merged into a circle C proceed as follows.
I If both circles are oriented anticlockwise, then orient C anticlockwise.
I If one circle is oriented clockwise, one is oriented anticlockwise, then orient C
clockwise.
I If both circles are oriented clockwise, then the map is zero.

Split. If one circle C is replaced by two circles, say C1 and C2, proceed as follows.
I If C is oriented anticlockwise, then take two copies of Dl+1. In one copy orient
C1 clockwise and C2 anticlockwise, in the other vice versa.
I If C is oriented clockwise, then orient both, C1 and C2, clockwise.
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Remark 3.14. These are the same rules as in [18] and [4]. They can also be given
by a TQFT, but the direct definition simplifies the introduction of signs. N

3.3.3. The map with signs. In general, the formulas below include two types of signs.
One type, which we call dot moving signs, also appear in [12], while the second,
called topological signs and saddle signs, are topological in nature and more involved.
These second types of signs will be given an interesting meaning in Subsection 4.5.
The main difference to [12] will be that we distinguish whether the two circles, that
are merged together or split into, are nested in each other or not. Define:

t(C) = (a choice of) a rightmost point in the circle C.

Let γ denote the cup in the cup-cap pair we use to perform the surgery procedure
in this step connecting vertices i < j.

Non-nested Merge. The non-nested circles C1 and C2 are merged into C. The
only case that is modified here is:
I One circle oriented clockwise, one oriented anticlockwise. Let Ck (for k ∈ {1, 2})
be the clockwise oriented circle and let γdot be a sequence of arcs in C connecting
t(Ck) and t(C). (Neither t(Ck), t(C) nor γdot are unique, but possible choices differ
in distance by 2, making the sign well-defined, see also [12, Lemma 5.7]. Thus, the
reader may choose any of these.) Proceed as in Subsection 3.3.2 and multiply with
the dot moving sign

(25) (−1)dΛ(γdot).

Nested Merge. The nested circles C1 and C2 are merged into C. Denote by Cin

the inner of the two original circles. The cases are modified as follows.
I Both circles oriented anticlockwise. Proceed as above, but multiply with

(26) − (−1)
1
4 (dΛ(Cin)−2) · (−1)sΛ(γ).

I One circle oriented clockwise, one oriented anticlockwise. Again perform the
surgery procedure as described in Subsection 3.3.2 and multiply with

(−1)dΛ(γdot) · (−(−1)
1
4 (dΛ(Cin)−2)) · (−1)sΛ(γ),

where γdot is defined as in (25).

Non-nested Split. The circle C splits into the non-nested circles Ci, containing
the vertices at position i, and Cj , containing the vertices at position j. For both
orientations we introduce a dot moving sign as well as a saddle sign as follows.
I C oriented anticlockwise. Use the map as in Subsection 3.3.2, but the copy where
Ci is oriented clockwise is multiplied with

(−1)dΛ(γndot
i ) · (−1)sΛ(γ),

while the one where Cj is oriented clockwise is multiplied with

−(−1)dΛ(γndot
j ) · (−1)sΛ(γ).

Here γndot
i and γndot

j are sequences of arcs connecting (i, 0) and t(Ci) inside Ci
respectively (j, 0) and t(Cj) in Cj (ndot can be read as “newly created dot”).
I C oriented clockwise. In this case multiply the result with

(−1)dΛ(γdot) · (−1)dΛ(γndot
i ) · (−1)sΛ(γ).

Here γdot is a sequence of arcs connecting t(C) and t(Cj) in C and γndot
i is as before.
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Nested Split. We use here the same notations as in the non-nested split case above
and furthermore denote by Cin the inner of the two circles Ci and Cj . The difference
to the non-nested case is that we substitute the saddle sign with a topological sign.
I C oriented anticlockwise. We use the map as defined in Subsection 3.3.2, but the
copy where Ci is oriented clockwise is multiplied with

(−1)dΛ(γndot
i ) · (−1)

1
4 (dΛ(Cin)−2),

while the copy where Cj is oriented clockwise is multiplied with

−(−1)dΛ(γndot
j ) · (−1)

1
4 (dΛ(Cin)−2).

Here γndot
i and γndot

j are as before.
I C oriented clockwise. We multiply with

(−1)dΛ(γdot) · (−1)dΛ(γndot
i ) · (−1)

1
4 (dΛ(Cin)−2),

again with the same notations as above.

3.3.4. Examples for the multiplication. We give below examples for some of the
shapes that can occur during the surgery procedure and determine the signs. In all
examples assume that outside of the shown strip all entries of the weights are ◦.

Example 3.15. This example illustrates the merge situation. First we look at a
simple merge of two anticlockwise, non-nested circles. In this case no signs appear
at all that means we have

∨ ∧
∨ ∧

//

∨ ∧
∨ ∧

// ∨ ∧(27)

The rightmost step above, called collapsing, is always performed at the end of a
multiplication procedure and is omitted in what follows.

Secondly, we consider a merge of two anticlockwise, nested circles. Depending on
the concrete shape of the diagram it can produce different signs:

∨ ∧ ∨ ∧
∨ ∨ ∧ ∧

//

∨ ∧ ∨ ∧
∨ ∧ ∨ ∧

and

∨ ∨ ∧ ∧ ∨ ∧
∨ ∨ ∧ ∨ ∧ ∧

// −
∨ ∧ ∨ ∧ ∨ ∧
∨ ∧ ∨ ∧ ∨ ∧

(28)

Note that, in contrast to [18], [4] or [12], nested merges can come with a sign. N

Example 3.16. This example illustrated the two versions of a split. In both cases a
non-nested merge is performed, followed by a split into two non-nested respectively
nested circles. First, the H-shape:
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∨ ∧ ∨ ∧
∨ ∧ ∨ ∧

//

∨ ∧ ∨ ∧
∨ ∧ ∨ ∧

// −
∨ ∧ ∧ ∨

∨ ∧ ∧ ∨
−

∧ ∨ ∨ ∧

∧ ∨ ∨ ∧

∨ ∧ ∨ ∧

∧ ∨ ∧ ∨
//
∧ ∨ ∧ ∨

∧ ∨ ∧ ∨
// −

∧ ∨ ∧ ∨

∧ ∨ ∧ ∨

(29)

Next, the C shape:

∨ ∧ ∨ ∧
∨ ∧ ∨ ∧

//

∨ ∧ ∨ ∧
∨ ∧ ∨ ∧

// −
∧ ∨ ∧ ∨

∧ ∨ ∧ ∨
+

∨ ∧ ∨ ∧
∨ ∧ ∨ ∧

∨ ∧ ∨ ∧

∧ ∨ ∧ ∨
//
∧ ∨ ∧ ∨

∧ ∨ ∧ ∨
//

∧ ∧ ∨ ∨

∧ ∧ ∨ ∨
N

(30)

Remark 3.17. The Cshape cannot appear as long as we impose the choice of the
order of cup-cap pairs from left to right in the surgery procedure and it will not be
needed in the proof of Theorem 4.18. N

3.4. Bimodules for Blanchet-Khovanov algebras. To define AF-bimodules we
need further diagrams moving from one block Λ to another block Γ.

Fix two blocks Λ,Γ ∈ bl� such that seq(Λ) and seq(Γ) coincide except at positions
i and i+ 1. Following [5], a (Λ,Γ)-admissible matching (of type ±αi) is a diagram t
inside R× [0, 1] consisting of vertical lines connecting (k, 0) with (k, 1) if we have
that seq(Λ)k = seq(Γ)k = F and, depending on the sign of αi, an arc at positions i
and i+ 1 of the form

αi :

i

× F

F × ,

i

F ◦

◦ F ,

i

F F

◦ × ,

i

× ◦

F F

−αi :

i

F ×

× F ,

i

◦ F

F ◦ ,

i

F F

× ◦ ,

i

◦ ×
F F

(31)

where we view seq(Λ) as decorating the integral points of R × {0} and seq(Γ) as
decorating the integral points of R× {1}. Again, the first two moves in each row
are called rays, the third ones cups and the last ones caps.

For t a (Λ,Γ)-admissible matching, λ ∈ Λ, and µ ∈ Γ we say that λtµ is oriented
if cups respectively caps connect one ∧ and one ∨ in λ respectively µ, and rays
connect the same symbols in λ and µ. For Λ = (Λ0, . . . ,Λr) a sequence of blocks
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a Λ-admissible composite matching is a sequence of diagrams t = (t1, . . . , tr) such
that tk is a (Λk−1,Λk)-admissible matching of some type. We view the sequence of
matchings as being stacked on top of each other. A sequence of weights λi ∈ Λi such
that λk−1tkλk is oriented for all k is an orientation of the Λ-admissible composite
matching t. For short, we tend to drop the word admissible, since the only matchings
we consider are admissible. Moreover, if only start Λ = Λ0 and end Γ = Λr matter,
then we call t short a (Λ,Γ)-composite matching.

We stress that Λ-composite matching can contain lines, in contrast to the diagrams
we consider for AF

Λ and AF.

Example 3.18. Below is a (Λ0,Λ5)-composite matching. Assume that outside of
the indicated areas all symbols of the block sequences are equal to ◦.

◦ F F F F F F ◦ ◦ Λ5
t5

◦ F F F ◦ × F ◦ ◦ Λ4
t4

◦ F F ◦ F × F ◦ ◦ Λ3
t3

◦ F ◦ F F × F ◦ ◦ Λ2
t2

◦ F ◦ F F F × ◦ ◦ Λ1
t1

◦ F ◦ ×
0

◦ F × ◦ ◦ Λ0

The types of the matchings are −α0, α2, α−1, α0, α1 (read from bottom to top). N

We now want to consider bimodules between Blanchet-Khovanov algebras for
different blocks, or said differently, bimodules for the algebra AF.

We start by defining a basis of the underlying K-vector space. To a Λ-composite
matching t we again associate a set of diagrams from which to create a K-vector
space (its elements are called stretched circle diagrams)

(32) B◦(Λ, t) =

λ(t,ν)µ

∣∣∣∣∣∣
λ ∈ Λ◦0, µ ∈ Λ◦r , ν = (ν0, . . . , νr) with νi ∈ Λi,
λν0 oriented, νrµ oriented,
νi−1tiνi oriented for all 1 ≤ i ≤ r.


As before we obtain the set B(Λ, t) by allowing λ ∈ Λ0 and µ ∈ Λr in (32).

Example 3.19. Let Λ be the block with block sequence F F ◦ × at positions
0, 1, 2, 3 and Γ the block with sequence F F F F at the same positions (both
with ◦ everywhere else) and assume both blocks are balanced. Then an example for
a (Λ,Γ)-matching of type α1 is the third diagram in the first row of (31) denoted
here by t1. Taking this as our composite matching we obtain a K-vector space of
dimension 6 with basis consisting of

∨ ∧ ∨ ∧
∨ ∧ ◦ ×

∨ ∧ ∧ ∨
∨ ∧ ◦ ×

∧ ∨ ∨ ∧
∧ ∨ ◦ ×

∧ ∨ ∧ ∨
∧ ∨ ◦ ×

∨ ∧ ∨ ∧
∨ ∧ ◦ ×

∧ ∨ ∧ ∨
∧ ∨ ◦ ×

N

For a basis vector µ(t,ν)η denote by η↓ its downwards reduction. This is the cap
diagram obtained by stacking the diagrams t1, . . . , tr, η on top of each other from left
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to right, removing any components in this stacked diagram that are not connected
to the bottom line of t1, and replacing all components that are connected to the
bottom in two vertices by a cap connecting the vertices. It is clearly independent of
µ. Analogously, define its upward reduction µ↑, a cup diagram independent of η.

Definition 3.20. Let t be a Λ-composite matching for Λ = (Λ0, . . . ,Λr). Set

AF(Λ, t) = 〈B◦(Λ, t)〉K
as a graded K-vector space. Hereby the degree of a basis element itself is, by
definition, minus the number of its anticlockwise circles plus the number of its
clockwise circles.

For a basis element λνµ ∈ AF
Λ0

define a left (bottom) action via

(λνµ)(µ(t,ν)η) =
∑
ν′

aν′λ(t,ν′)η,

with the coefficients aν′ given by the multiplication

(λνµ)(µν0η
↓) =

∑
ν′

aν′λν
′η↓.

Then aν′ = aν′ for ν′ the unique orientation with ν′0 = ν′ and all components
not connected to the bottom line of t1 have the same orientation as in µ(t,ν)η.

Analogously define a right (top) action of AF
Λr

using the upwards reduction µ↑. N

Example 3.21. The basis elements (read from left to right) from Example 3.19
have degrees −2, 0, 0, 2 (top row) and −1, 1 (bottom row). N

It is not clear that the above actions are well-defined and commute and we need
the translation between W and AF from Section 4 to prove it.

Proposition 3.22. Let t be a Λ-composite matching for Λ = (Λ0, . . . ,Λr). Then

the left action of AF
Λ0

and the right action of AF
Λr

on AF(Λ, t) are well-defined and

commute. Hence, AF(Λ, t) is a AF
Λ0

-AF
Λr

-bimodule (and thus, a AF-bimodule). �

Proof. Using Theorem 4.18, we obtain an isomorphism of graded algebras of AF
Λ

with W◦~k. An isomorphism of graded K-vector spaces of AF(Λ, t) with W(w(Λ, t))

is obtained by using Lemma 4.16. This isomorphism intertwines the actions of the
two algebras on the bimodules by construction and hence, proves the claim. �

We introduce a slight generalization of the notion of an admissible matching, the
so-called empty moves (of which the reader should think of switching neighboring ◦
and ×). This means that in the list of local moves (31) we also allow the following:

2αi :

i

× ◦
∨ ∧
◦ ×

−2αi :

i

×◦
∨ ∧

◦×
(33)

If a composite matching t contains empty moves, AF(Λ, t) is constructed as follows.
Take the composite matching t′ that is obtained by substituting each empty move
by the composition of a cup and cap local move such that its fits with the two blocks.
Then take the submodule spanned by those basis elements such that the internal
circles are all oriented anticlockwise. It is evident that this will be a submodule of
the full bimodule where all orientations are allowed. Finally, shift the module up by
the total number of empty moves in t.



26 MICHAEL EHRIG, CATHARINA STROPPEL, AND DANIEL TUBBENHAUER

Example 3.23. The pictures below are wildcards for the AF-bimodules defined
via the illustrated matchings.

× ◦

F F

◦ ×
∼=

i

× ◦
∨ ∧
◦ ×

{+1} ⊕

i

× ◦
∨ ∧
◦ ×

{−1} ,

◦ ×
F F

× ◦
∼=

i

×◦
∨ ∧

◦×
{+1} ⊕

i

×◦
∨ ∧

◦×
{−1}

The isomorphisms of AF-bimodules are evident by the construction above. N

Proposition 3.24. The AF-bimodules AF(Λ, t) are finite-dimensional, graded
biprojective AF-bimodules. �

Proof. Clearly, AF(Λ, t) are finite-dimensional AF-bimodules. That they are graded
as AF-bimodules follows by the identification with web bimodules from Lemma 4.16.
We only prove here projectivity for the left action, the right action is done analogously.
Denote by Λ and Γ the first and last block in Λ. For any µ ∈ Γ denote by µ↓1µ↓

the idempotent in AF
Λ corresponding to the downwards reduction of µ. Then, as an

AF
Λ-module, AF(Λ, t) decomposes as a direct sum of modules of the form AF

Λ ·(µ↓1µ↓),
which are projective AF

Λ-modules, proving the claim. �

This proposition again motivates the definition of the following 2-category which
is, as before, one of the main objects that we are going to study.

Definition 3.25. Given AF as above, let AF-biModpgr be the following 2-category:

• Objects are the various Λ ∈ bl�.
• Morphisms are finite sums and tensor products (taken over AF) of the
AF-bimodules AF(Λ, t).

• The composition of AF-bimodules is given by tensoring (over AF).
• 2-morphisms are AF-bimodule homomorphisms.
• The vertical composition of AF-bimodule homomorphisms is the usual

composition and the horizontal composition is given by tensoring (over AF).

We consider AF-biModpgr as a graded 2-category with 2-hom-spaces as in (1). N

In analogy to Web from the end of Subsection 2.2, the objects and morphisms
(when seen as composite matchings) in AF-biModpgr can be seen as a K(q)-linear
category, which we denote by CM.

4. Equivalences

In this section we assume that all appearing ~k’s and Λ’s are balanced. Our goal
now is to construct an isomorphism of graded algebras Φ : W◦ → AF (where W◦ is a
certain subalgebra of W defined in (40)). This isomorphism Φ induces the following:

Theorem 4.1. There is an equivalence of graded, K-linear 2-categories

Φ : W-biModpgr

∼=−→ AF-biModpgr

under which the W-bimodules W(w(Λ, t)) (with w(Λ, t) defined in Definition 4.9
below) are identified with the AF-bimodules AF(Λ, t). �

4.1. Some useful lemmas. In order to prove Theorem 4.1, we need some lemmas.

Lemma 4.2. Let ` ∈ Z≥0. Then dimK(2EndF(12ω`
)) = 1. �

Proof. Note that the identity foam on 12ω`
(i.e. ` parallel phantom facets) is an

element of 2EndF(12ω`
) which shows that dimK(2EndF(12ω`

)) ≥ 1. Now, given any
f ∈ 2EndF(12ω`

), denote by g ∈ 2EndF(∅) (where ∅ denotes the empty web) the
closed foam obtained from f by closings the ` bottom and top phantom facets to
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phantom spheres. Note that the question whether there are relations to reduce f to
a scalar multiple of the identity foam on 12ω`

is the same as the question whether g
can be evaluated to a scalar. But the latter can be achieved using the relations in F
(which can be shown similar as in [19, Proposition 5]). Thus, every such f is a scalar
multiple of the identity foam on 12ω`

which shows that dimK(2EndF(12ω`
)) ≤ 1. �

Lemma 4.3. The following foams are locally one-sided invertible in F (the ones in
the first column have a right inverse obtained by gluing from the bottom, the ones
in the second column a left inverse obtained by gluing from the top):

f1 =

•
, f3 =

f2 = , f4 =

•

(34)

Similarly with the dots moved to the opposite facets. This implies locally that

2

2  f1

f2


//

2

2

{+1} ⊕

2

2

{−1}
(
−f3 f4

)
//

2

2

(35)

induce isomorphisms in W-biModpgr between web bimodules. �

Proof. The statement of one-sided invertibility follows from the top bubble re-
movals (13) (by stacking the foams in the first column on top of the foams in the
second column). The invertibility of the foams with a different dot placement follows
from the above and the dot migrations (17). The claim that the given morphisms
are isomorphisms follows from composing them and using both bubble removals (13)
and (14) as well as the neck cutting relation (15). �

The next lemmas say that isotopic webs give isomorphic web modules.

Lemma 4.4. We have locally

2

2

1

1

∼=

2

2

1

1

and

2

2

1

1

∼=

2

2

1

1

(36)

which are isomorphisms in W-biModpgr between web bimodules. �
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Proof. The proof is similar to the one of Lemma 4.3: we can cap the bulge part
respectively cup the two straight lines using the evident (undotted) foams. Then
the ordinary-to-phantom neck cutting relations (18) provide the isomorphisms. �

Lemma 4.5. We have locally (where we use “rectangular” diagrams as in (19))

1 0

1 0

∼=

1 0

1 0

and

10

10

∼=

10

10

1 0 1 0

0 1 0 1

∼=

1 0 1 0

0 1 0 1

and

2 1 2 1

1 2 1 2

∼=

2 1 2 1

1 2 1 2

etc.

which are isomorphisms in W-biModpgr between web bimodules. Analogously for
other isotopies of webs. �

Proof. This is evident. �

Given a web u, then we denote by û the topological web obtained from u by
forgetting orientations, labels and phantom edges, i.e. we have locally

1

1

7→ ,

2

2

7→ ∅ ,

2

1 1

7→ ,

2

1 1

7→

The topological webs are just non-crossing arcs and (closed) circles. We call any
web u such that û is topologically a circle also a circle. Similarly for webs u such
that û is topologically a cup, cap or a line. Moreover, we assume that the leftmost

non-zero entries of Λ ∈ bl� and ~k ∈ bl
� are at the same position in what follows.

Lemma 4.6. Let λ ∈ Λ with j entries equal to ×. Consider the cup diagram λ.
Assume that λ does have `′ rays and in total ` + `′ − j components. Then there

exists a cup-ray web u ∈ CupRay(~k) such that the entries of ~k sum up to 2`+ `′,
and such that the topological web û is λ. �

The sequences Λ ∈ bl� and ~k ∈ bl
� are related by the bijection from (38) below.

Proof. Given a cup diagram λ with `+ `′ − j components nested in any order, we

can generate it using E
(r)
i ’s and F

(r)
i ’s acting on the sequence ω`+`′ + ω`. It is clear

from (19) that we can open one cup for each entry 2 of ω`+`′ + ω`. By using

2 2 0 0

1 1 1 1

 

F F F F

and

2 2 0 0

1 1 1 1

 

F F F F

(37)

we can nest them and place them next to each other in any order we like (by locally
shifting everything in place as above). Last, by using the shifts from (19), we
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can move the remaining entries 1 to form the rays, and move the entries 2 to the
positions of the × symbols while building the cup parts of λ. �

Lemma 4.7. For each Λ-composite matching t, there exists a web u ∈ HomF(~k,~l)
such that the topological web û is t. �

Proof. Mutatis mutandis as in the proof of Lemma 4.6. �

Even if we require a web u to be F -generated, there are still several ways to built
λ or t. In order to fix one, we say an F -generated web u prefers right to left if,
inductively, the component with rightmost right boundary point of λ or t is created
from the rightmost available 2, if its a cup, or the rightmost available 1, if its a ray
(using a minimal number of possible moves). We create the right boundary point of
a cup before the left. In the whole procedure we avoid creating circles.

Lemma 4.8. In the set-up of Lemma 4.6 or of Lemma 4.7 we can make u unique
by requiring it to be F -generated and preferring right to left. �

Proof. An easy observation shows that we do not need Ei’s and E
(2)
i ’s in order to

built λ or t (this holds more generally, see [37, Lemma 4.9]). Moreover, we can always
avoid creating circles. Thus, we obtain a set Fgen of F -generated webs such that û
gives λ or t. All of these differ by distant commutation relations as in Lemma 4.5

(bottom moves) or Serre relations ΦWeb
Howe((Fi+1F

(2)
i − FiFi+1Fi + F

(2)
i Fi+1)1~k) = 0.

One checks that, for fixed ~k ∈ bl
�, all Serre relations have only two non-zero terms

and that the corresponding pictures are as in Lemmas 4.4 and 4.5. Hence, there is
a unique web in Fgen that prefers right to left which can be shown by induction on
the number m of components of λ or t. This is clear if m = 0 or m = 1. For m > 1
remove the leftmost connected component from λ or t and obtain λ′ or t′ with one
connected component less. We can then apply the induction hypothesis and we get
a unique web u′ such that û′ is λ′ or t′. Since we removed the leftmost component
of λ or of t, we can now just construct u from u′ (the result is unique due to our
conventions for such webs). �

Hence, the following definition makes sense.

Definition 4.9. Let Λ ∈ bl�. Given λ ∈ Λ, we denote by w(λ) the unique web as
in Lemma 4.8, and given a Λ-composite matching t, we denote the unique web as
in Lemma 4.8 by w(Λ, t). N

Examples of such webs are given in (37). Moreover, the following assignment

(38) ~k ∈ bl
� 7→ Λ ∈ bl�, via 0 7→ ◦, 1 7→ F, 2 7→ ×,

clearly defines a bijection. Here ◦,F,× are entries of seq(Λ) and Λ is determined
demanding that Λ is balanced.

The next lemma is important for the calculation of the signs that turn up in the
multiplication procedure. For this purpose, fix a circle C in a web w(λ)w(µ)∗ with
corresponding circle C ′ in λµ. For such a circle let nest(C) be the total number of
circles C in

i nested in C. We denote by ipe(C) the total number of internal phantom
edges of C (all such edges that lie in the interior of C, but not in the interior of any
circle nested in C) and more generally by

ipe
(
C −⋃nest(C)

i=1 C in
i

)
the total number of internal phantom edges of C after removing C in

i (by using
simplifications as isotopies, (36) and (35)). Recalling d(·) from Definition 3.10, we
have the following lemma:
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Lemma 4.10. Given a circle diagram λµ (for suitable λ, µ ∈ Λ) and its associated
web w(λ)w(µ)∗. Fix any circle C ′ in λµ and denote the associated circle in
w(λ)w(µ)∗ by C. Then

ipe(C) = 1
4

(
d(C ′) +

∑nest(C)
i=1 d(Ciin)− 2 + 2 · nest(C)

)
,

ipe
(
C −⋃nest(C)

i=1 C in
i

)
= 1

4 (d(C ′)− 2) ,

where Ciin denotes the counterparts in λµ of the circles Ciin of w(λ)w(µ)∗.

Proof. We prove this by induction on the total length of all components in question.
Circles C in their easiest form as on the left in (42) below have zero internal phantom
edges and d(C) = 2, which is the start of our induction. The main observation now
is that the move in (36) increases the number of internal phantom edges by one
and the length by four (no matter which side of the diagram is the internal part of
the circle). This shows the formulas in case that ipe(C) has no nested circles. The
general formulas follow similarly, where we note that each × within C ′ increases its
length by 2 and creates a internal phantom edge in C. �

Example 4.11. The circles C ′ and C1
in as on the right in (42) have d(C ′) = 6 and

d(C1
in) = 2, and its counterpart C has one internal phantom edge after removing

the nested circle, while is has two internal phantom edges in total. Circles C ′ of H
or C shape as in (43) have d(C ′) = 6 respectively d(C ′) = 10 and their counterparts
have two respectively one internal phantom edge. N

4.2. An action of the quantum group U̇q(gl∞) and arc diagrams. We obtain
now an action of the quantum group on CM (with CM being as at the end of
Subsection 3.4) via the functor

ΦCM
Howe : U̇q(gl∞)→ CM,

given on objects by ΦCM
Howe(~k) = Λ (with associated Λ ∈ bl� as in (38)) and on identity

morphisms by ΦCM
Howe(1~k) = 1Λ. For the generating morphism Ei1~k, ΦCM

Howe(Ei1~k) is
the bimodule corresponding to the unique local picture in the first row of (31) that
fits with Λ at position i and i+1, or zero if none of them fits, ΦCM

Howe(Fi1~k) is defined
analogously using the local moves in the second row of (31). The divided powers

E
(2)
i 1~k respectively F

(2)
i 1~k are sent to the bimodules for the empty moves in (33)

for 2αi respectively −2αi, again only if the block fits at position i and i+ 1, and to

zero otherwise. As in Subsection 2.3, all higher divided powers E
(r)
i 1~k, F

(r)
i 1~k for

r > 2 are sent to zero. By our discussion in the previous subsection, we see that
ΦCM

Howe is a functor of K-linear categories.

4.3. The cup basis. The goal of this subsection is to define a basis of the morphism
spaces on the side of foams which we call the cup basis.

Definition 4.12. Let u(W~k)v be as in Definition 2.24. Perform the following steps.

(I) Label each circle in uv∗ by either “no dot” or “dot”. Consider all possibilities
of labeling the circles in such a way.

(II) For each such possibility we construct a foam f : 12ω`
→ uv∗ via:

• If a circle is in its easiest form (i.e. only one incoming phantom edge
and only one outgoing phantom edge), then we locally use the foam at
the top right in (34) for circles with label “no dot” and the foam at
the bottom right in (34) for circles with label “dot”.
• If a circle is more complicated, then we first apply the isomorphisms

described in Lemma 4.4 to reduce the circle to its easiest form, then we
proceed as before, and finally we rebuild the circle using the inverses as
in Lemma 4.4. Then we move the dot to the rightmost facet using (17)
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(the meticulous reader will note that this is ill-defined since there could
be more than one rightmost facet, but one can choose any of them:
dots passing from one rightmost facet to another always have to move
an even number of times across phantom facets, see (36)).

From this we obtain a set of foams Cup(uv∗) which we call the cup basis of u(W~k)v.
Basis elements of this basis are called basis cup foams. This name is justified: by
construction, the foams in u(W~k)v are topological obtained by “cupping off circles

in the evident way”. Similarly, given u ∈ HomF(~k,~l) we can define a cup basis
Cup(u) of W(u) as above with the extra condition that we first close the web u in
any possible way. N

Lemma 4.13. Let u, v ∈ Cup(~k). The set Cup(uv∗) is a homogeneous, K-linear
basis of the space u(W~k)v. �

Proof. That Cup(uv∗) is homogeneous is evident. To show that we get a basis, we
use induction on the number m of circles in uv∗. If m = 0, then the statement
is clear by Lemma 4.2. So let m > 0. Choose now any maximally nested circle
C (a circle that does not have any nested components) in uv∗ (we have to choose
such a maximally nested circle in order use locally the foams from (34)). Remove it
from uv∗ and obtain a new web ũṽ∗ with fewer number of circles. By induction,
Cup(ũṽ∗) is a basis of ũ(W~k)ṽ. Now apply the isomorphism from (35) and create
a new circle by taking two copies of the basis elements from Cup(ũṽ∗) (shifted up
by one respectively down by one). The claim of the lemma follows if C was in its
easiest form. Otherwise, we rebuild the chosen circle C from the newly created
circle using isomorphisms as

2

2

2

2

··· ··· ∼=

2

2

2

2

· · ·· · · ∼= etc.

from Lemma 4.4. Finally move dots to the rightmost facets using the dot migra-
tions (17). Thus, the lemma also follows in this case. �

Lemma 4.14. Let u ∈ HomF(~k,~l). The set Cup(u) is a homogeneous, K-linear
basis of the web bimodule W(u). �

Proof. Similar to the proof of Lemma 4.13: the induction start is the same and uses
Lemma 4.2. Note that W(u) is obtained from u (which has possibly only cups, caps
and rays and no circles) by closing the bottom and top in any possible way. Thus,
for each such “closure” of W(u) we can use the argument from above. �

We now match the cup basis Cup(uv∗) with the basis λB◦(Λ)µ defined in (24).

Lemma 4.15. Let u, v be webs such that u = w(λ) and v = w(µ). There is an
isomorphism of graded K-vector spaces

(39) Φλµuv : u(W~k)v → λ(AF
Λ)µ

which sends Cup(uv∗) to λB◦(Λ)µ by identifying the cup foams without dots with
anticlockwise circles and the foams with dots with clockwise circles. �
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Proof. The sets Cup(uv∗) and λB◦(Λ)µ are clearly in bijective correspondence.
Moreover, recalling Lemma 3.9 and the shift as in Definition 2.24, we obtain that
Φλµuv is homogeneous, which proves the lemma. �

Similarly, we match the cup basis Cup(u) with the basis B◦(Λ, t) from (32):

Lemma 4.16. Let u be a web such that u = w(Λ, t). There is a surjection of
graded K-vector spaces

φλµuv : W(u)→ AF(Λ, t)

which sends Cup(u) to B◦(Λ, t) by identifying the basis cup foams without dots
with anticlockwise circles and the basis cup foams with dots with clockwise circles.�

The statement of Lemma 4.16 can be easily strengthen using Lemma 4.22.
(Morally, the web bimodules are infinite-dimensional in a “stupid way”.)

Proof. To show that (41) is indeed a homogeneous, K-linear surjection we can
proceed as in the proof of Lemma 4.15 since both bases, Cup(u) and B◦(Λ, t), are
in the end defined by closing u respectively t in all possible ways. �

Let still Λ ∈ bl�. Given λ, µ ∈ Λ, let us denote for u = w(λ) and v = w(µ) (and
only these)

(40) W◦~k =
⊕

u,v∈Cup(~k)

u(W~k)v and W◦ =
⊕
~k∈bl

W~k.

The following is a direct consequence of Lemma 4.15.

Corollary 4.17. For any λ, µ ∈ Λ and u = w(λ), v = w(µ): the isomorphisms Φλµuv
from (39) extend to isomorphisms of graded, K-vector spaces

(41) ΦΛ
~k

: W◦~k → AF
Λ, Φ : W◦ → AF.

where we identify ~k and Λ as in (38). �

4.4. Proof of the main result. We deduce now Theorem 4.1 from the following.

Theorem 4.18. The maps from (41) are isomorphisms of graded algebras. �

Before we prove Theorem 4.18 in Subsection 4.5, we deduce some consequences,
e.g. our main result. Moreover, the identification from Theorem 4.18 allows us to
use topological arguments (i.e. foams) to deduce algebraic properties. In particular,
we obtain the associativity of the Blanchet-Khovanov algebras.

Corollary 4.19. The multiplication rule from Subsection 3.3 is independent of the
order in which the surgeries are performed. This turns AF

Λ into a graded, associative,
unital algebra. Similar for (the locally unital) algebra AF. �

Proof. This follows directly from Theorem 4.18 (note that the stated properties are
clear if we work with the web algebra, see Corollary 2.28). �

Remark 4.20. Theorem 4.18 leaves the question how the Blanchet-Khovanov
algebra AF

Λ and Khovanov’s original arc algebra Hm are related (and thus, how the
Blanchet foam construction relates to the Khovanov [17] and Bar-Natan [1] theory

using cobordisms). To answer this question, note that the action of U̇q(gln) from
Subsection 4.2 extends to a 2-representation of Khovanov-Lauda’s categorification
of U̇q(gln), see [24, Proposition 3.3]. The same holds on the side of Khovanov’s arc
algebra, see [6, Remark 5.7]. Hence, it follows, for suitable choices of Λ and m, that

AF
Λ and Hm are (graded) Morita equivalent. This can be deduced from Rouquier’s

universality theorem, see [33, Proposition 5.6 and Corollary 5.7], compare also to

[27, Proposition 5.18]. Since AF
Λ and Hm are basic algebras, it follows by abstract
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nonsense that AF
Λ and Hm are isomorphic algebras (in fact, as graded algebras). This

approach however does not provide an explicit isomorphism. Such an isomorphism
is constructed in [14, Section 4] using a slightly more general framework. N

Remark 4.21. Theorem 4.18 gives a way to compute the functorial chain complex
(which is a link invariant) defined by Blanchet, see [2], and all its involved maps.
Indeed, in our framework AF comes equipped with an easy to handle basis and all
appearing AF-module homomorphisms can explicitly be computed in this basis. This
is in contrast to the local action used in [24, Proposition 3.3] to define Blanchet’s
link homologies, see [24, Subsection 4.1], because it is not a priori clear in their
formulation how to do explicit computations (since globally a significant number of
non-trivial signs come into play). N

Note that we consider webs in u ∈ Cup(~k) without imposing any relations. On
the “uncategorified level” in the sense of Kuperberg [23], this has to be modified:

denote by Cup(~k)
K(q)
rel = 〈Hom(12ω,~k)〉K(q) the K(q)-linear vector space obtained

from Cup(~k) by linearization and modding out by the circle removal relation

2

2

= (q + q−1) ·

2

2

and isotopy relations as in the Lemmas 4.4 and 4.5. Note that, on the “categorified
level” in which we work in the rest of the paper, we do not need to impose these
relations since we “lift” them to the isomorphisms from Lemmas 4.3, 4.4 and 4.5.

Lemma 4.22. Let Λ ∈ bl� and ~k be its associated element in bl
� (see (38)). Then

{u ∈ Cup(~k) | u = w(λ), λ ∈ Λ}

is a K(q)-linear basis of Cup(~k)
K(q)
rel .

Proof. This is clear by the relations imposed on Cup(~k)
K(q)
rel . �

We are finally able to prove our main result.

Proof of Theorem 4.1. Instead of taking all webs u ∈ Cup(~k), it suffices to take a

basis of Cup(~k)
K(q)
rel and the webs w(λ) form such a basis by Lemma 4.22. Concretely,

the algebras W~k (all webs) and W◦~k (only basis webs) are graded Morita equivalent

(this can be seen similar to [26, Lemma 7.5]) and the statement follows from
Theorem 4.18. The identification of the bimodules as graded K-vector spaces is
clear by Lemma 4.16, while the actions agree by Theorem 4.18 and construction of
the actions. �

4.5. The proof of the graded isomorphism. We now prove Theorem 4.18.

Proof of Theorem 4.18. By Lemma 4.15, it suffices to show that ΦΛ
~k

is a homomor-

phism of algebras (since then so is Φ as well). For this purpose, fix λ, µ, ν ∈ Λ and
set u = w(λ), v = w(µ), and w = w(ν). We show that any product of two basis
cup foams f ∈ Cup(uv∗) and g ∈ Cup(vw∗) satisfies

Φλνuw(fg) = Φλµuv (f)Φµ
′ν
v′w(g), v = v′, µ = µ′

(This is enough since all non-zero multiplications on the side of AF
Λ as well as on the

side of W~k satisfy v = v′ and µ = µ′ by definition.)
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In order to do so, we show that each step in the multiplication procedure from
Definition 2.24 locally agrees with the one from Subsection 3.3. There are four
topological different situations to check (compare with the cases in Subsection 3.3
introducing the different signs):

(i) Non-nested merge. Two non-nested circles are replaced by one circle.
(ii) Nested merge. Two nested circles are replaced by one circle.
(iii) Non-nested split. One circle is replaced by two non-nested circles.
(iv) Nested split. One circle is replaced by two nested circles.

We will consider these four cases step-by-step and compare the corresponding
multiplications rules. In addition to the four cases we will further distinguish the
following shapes of the involved underlying webs:

(A) Basic shape. The involved components are as small as possible with the
minimal number of phantom facets.

(B) Minimal saddle. While the components themselves are allowed to be of
any shape, the involved saddle only includes a single phantom facet.

(C) General case. Both, the shape as well as the saddle, are arbitrary.

We start by comparing the two multiplication rules for the basic shapes first.
This will only involve simplified versions of the dot moving signs. The basic shapes
for (i), (ii), (iii) and (iv) are the following (with the multiplication step taking place
in the marked region)

2

2

! and

2

2

2

2

!(42)

in cases (i) and (ii), and the following H-shape and C-shape

2

2

2

2

! and

2

2

!(43)

in cases (iii) and (iv). Here we always display both, the web as well as its corre-
sponding arc diagram.

I Non-nested merge - basic shape. In this case, we merge two simple cup webs
on the web side and two oriented circles on the arc diagram side. The following
table gives the multiplication results in the four possible orientation combinations.
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W◦~k
•

AF
Λ ∨ ∧ ∧ ∨

• ∨ ∧ ∨ ∧ ∧ ∨

• •
0 ∧ ∨ ∧ ∨ 0

To obtain this table one argues as follows: merging two basis cup foams via a saddle
creates a new basis cup foam. Thus, only the position of the dot matters if we
rewrite the result in the cup basis. If there is no dot or there are two dots on the
new cup foam, then we are done (the latter follows from (8)). If there is only one
dot note that it is automatically on the rightmost facet and we are done as well (no
signs). This is precisely as in (27). �

I Nested merge - basic shape. This step in case of AF
Λ was calculated in (28).

In case of W◦~k this is given by stacking the saddle displayed below on top of a given

foam (the second foam displayed below is shown to illustrate the cylinder we want
to cut).

2

2

2

2

//

2

2

2

2

//

2

2

2

2

Note now that the difference to the non-nested merge above is that, if a basis cup
foam is sitting underneath the leftmost picture, then the end result is topological not
a basis cup foam. In order to turn the result into a basis cup foam, we apply (15)
to the cylinder illustrated above. Here we have to use (16) first, which gives an
overall sign. After neck cutting the cylinder we create a “bubble” (recalling that
a basis cup foam is sitting underneath) with two internal phantom facets in the
bottom part of the picture. By (18), we can remove the phantom facets with the
cost of a sign and create an “honest” bubble instead. Thus, by (14), only the term
in (15) with the dot on the bottom survives (with a sign). By (13) the remaining
bubble evaluates to −1. Hence, we get in total four overall signs which is the same
as no extra sign. The dots behave as in the table above, since before the neck cut
we can move any of them to the top and thus they do not interfere with the above
procedure. Thus, using (17), we get the same result as in (28). �
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I Non-nested split - basic shape. This step in case of AF
Λ was calculated in (29).

For W◦~k the multiplication is given by the composition of the following foams.

2

2

2

2

//

2

2

2

2

//

2

2

2

2

As before, we can use the neck cutting (15) on the cylinder that corresponds to the
right circle (we could also choose the other one and slightly change the steps below).
The result is precisely as in (29):

• If the original basis cup foams sitting underneath has no dots, then the one
with the dot on the rightmost circle gets no sign (the dot is automatically
on the rightmost facet), and the other does not as well (the dot from the
neck cutting needs to pass one phantom facets to move to the right).
• If the original basis cup foams sitting underneath has already a dot, then

only the positive term in (15) survives and the dots are already in the
rightmost positions.
• In both cases, the resulting foam is topological not a basis cup foam, but

using (18) once reduces it to a basis cup foam, giving an overall sign. �

I Nested split - basic shape. This step in case of AF
Λ was calculated in (30). In

case of W◦~k we again give the composite of foams that we stack on top of each other

for the multiplication.

2

2

//

2

2

//

2

2

Again we can apply neck cutting. This time to the internal cylinder in the second
foam between the middle web and the rightmost web connecting the two nested
circles that we can cut using (15). The result is precisely as in (30):

• If the original basis cup foams sitting underneath has no dots, then the one
with the dot on the non-nested circle gets a sign (the dot is automatically
on the rightmost facet), while the other does not (the dot created in the
neck cutting needs to pass two phantom facets to get to the right).
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• If the original basis cup foams sitting underneath has already a dot, then
only the positive term in (15) survives and the dots are already in the
rightmost positions.
• In both cases, the resulting foam is already topological a cup basis foam

and nothing needs to be done anymore. �

All other situations (i.e. general shapes) are similar to the ones discussed, but
with the main difference that dots need to be shifted to the rightmost facets, some
(intermediate) results might not be in the topological form of a basis cup foam
and one needs to take care of saddles with a possible number of additional internal
phantom facets as in (21). These three facts together explain the signs turning up
in the multiplication described in Subsection 3.3 with the first one corresponding to
the dot moving sign as in (25), the second corresponding to the topological signs as
in (26) and the latter to the saddle sign as in (26).

Thus, we next deal with the minimal saddle situation as for example in (22). In

those cases s(γ) = 1 on the side of AF
Λ. This will introduce the topological signs and

simplified versions (for s(γ) = 1) of the saddle signs.

I Non-nested merge - minimal saddle. This is topologically the same as in
non-nested merge - basic shape, since the resulting foam will already be a basis cup
foam. Thus, the only sign comes from moving dots to the right which matches the
dot moving sign turning up in the multiplication on the side of AF

Λ in (25). �

I Nested merge - minimal saddle. Assume now that we merge a circle Cout

with some nested circle C in inside of it.
The dot moving is as above in non-nested merge - minimal saddle and gives the

same sign as for AF
Λ. The difference to the nested merge in the basic shape is that

we have to bring the resulting foam in the topological form of a basis cup foam. To
this end, we can proceed as in nested merge - basic shape and cut the same cylinder
as there. We first note that neither the dots which are already on the foam sitting
underneath nor the internal circles in Cout which are different from C in matter: we
can topologically move them “away from the local picture”.

Thus, to simplify a little bit, assume that C in is the only circle nested in Cout and
there are no dots. Following the procedure given as in nested merge - basic shape
above, we see that the only things of importance are signs that come from cutting
the cylinder with possible internal phantom facets and evaluating the “bubble” with
possible more than one internal phantom facets. Indeed, what matters is the number
of times we need to use (16) in the cutting procedure of the cylinder and the number
of times we need to use (18) in the bursting of the “bubble” (the rest stays the
same as before in nested merge - basic shape). Now, the number of times we need
to apply (16) is ipe(Cout)− 1 (the −1 comes in because we apply a saddle which
removes one of the internal phantom edges of the starting picture) and the number
of times we need to apply (18) is ipe(Cout − C in). By Lemma 4.10, we obtain that

(−1)ipe(Cout)−1+ipe(Cout−Cin) = (−1)
1
4 (2(d(Cout)−2)+d(Cin)−2)

= −(−1)
1
4 (d(Cin)−2) · (−1)1,

(44)

where Cout and Cin are the cup diagram counterparts of Cout and C in. This
is precisely the same sign turning up on the side of AF

Λ (compare to (26) with
sΛ(γ) = 1).

The case where Cout has several nested components, is similar since all nested
components of Cout, which are not C in, increase the number of times we need to
use (16) in the same way as the number of times we need to use (18) (hence, no

change modulo 2). Again, this matches the side of AF
Λ in (26). �
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I Non-nested split - minimal saddle. The dot moving is as before. Observe
now that we do not have an extra sign turning up although the resulting foam is
not in the topological shape of a basis cup foam. To see this, we first simplify by
assuming that the circle C which is split does not contain any nested components.
Using the same cutting as in non-nested split - basic shape, we have signs coming
from squeezing cylinders and simplifying “bubbles” (similar as above in nested merge
- minimal saddle). But the number of times we need to apply (16) in this case is
now the same as the number of times one has to apply (18), namely ipe(C) − 1.
Thus, again no change modulo 2. The case with nested components in C is now
analogously as above in nested merge - minimal saddle since we can move dots and
nested circles “away”. As before, this increases the number of times we need to
use (16) in the same way as the number of times we need to use (18) (hence, no

change mod 2). Thus, we do not get an extra overall sign as in case of AF
Λ (see

Subsection 3.3.3 non-nested split case). �

I Nested split - minimal saddle. Moving dots is again as before. Furthermore,
again, as in nested merge - minimal saddle, we need to topologically manipulate
the resulting foam until it is in basis cup foam shape. We can proceed as before in
nested split - basic shape and, similar as above in nested merge - minimal saddle,
we pick up signs coming from cylinder cuts and bubble removals. In fact, the total
sign can be calculated analogously as in nested merge - minimal saddle (and is the

same as there). Again, this matches the side of AF
Λ (see Subsection 3.3.3 nested

split case). �

I Non-nested merge - general case. In fact, nothing changes compared to the
discussion in non-nested merge - minimal saddle, since dots passing a saddle always
pass an odd number of phantom facets (compare to (21)) and the resulting foams
are topological already basis cup foams. �

I Nested merge - general case. The dot moving stays as before. The only thing
that changes in contrast to nested merge - minimal saddle is that we obtain

(−1)ipe(Cout)−s+ipe(Cout−Cin) = (−1)
1
4 (2(d(Cout)−2)+d(Cin)−2) · (−1)s(γ)−1

= −(−1)
1
4 (d(Cin)−2) · (−1)s(γ).

within the topological re-writing procedure instead of the formula from (44). Thus,

this matches the side of AF
Λ (see (26)). �

I Non-nested split - general case. Again, the dot moving stays as before.
The difference to non-nested split - minimal saddle is that we have to apply (18)

s-times instead of once, which gives the sign turning up for AF
Λ (see Subsection 3.3.3

non-nested split case). �

I Nested split - general case. There is no difference to the arguments given in
nested split - minimal saddle. Again, this matches the side of AF

Λ (see Subsection 3.3.3
nested split case). �

Hence, in each case the topological multiplication agrees with the algebraically
defined one. This concludes the proof. �
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