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Abstract. We prove that the bigraded colored Khovanov–Rozansky type A link
and tangle invariants are functorial with respect to link and tangle cobordisms.
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1. Introduction

Building on Khovanov’s categorification of the Jones polynomial [21], Khovanov–
Rozansky [25] introduced a link homology theory categorifying the slN Reshetikhin–
Turaev invariant. Their homology theory associates bigraded vector spaces to link
diagrams, two of which are isomorphic whenever the diagrams differ only by Reide-
meister moves. In the original formulation, the link invariant, thus, takes values in
isomorphism classes of bigraded vector spaces.

The first question posed by this construction is whether there is a natural choice
of Reidemeister move isomorphisms, such that any isotopy of links in R3 gives rise
to an explicit isomorphism between the Khovanov–Rozansky invariants, which only
depends on the isotopy class of the isotopy. A positive answer to this question provides
a functor: {

link embeddings in R3

isotopies modulo isotopy

}
−→

{
bigraded vector spaces

isomorphisms

}
1
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The second question, building on the first, is whether this functor can be extended
to a functor:{

links embeddings in R3

link cobordisms in R3 × [0, 1] modulo isotopy

}
−→

{
bigraded vector spaces

homogeneous linear maps

}
The goal of this paper is to answer both questions affirmatively, i.e. to prove the
functoriality of Khovanov–Rozansky link homologies for N ≥ 2 under link cobordisms.

This result is new to the best of our knowledge, except in low-rank cases. For
N = 2, functorial theories were obtained by Caprau [6], Clark–Morrison–Walker [12]
and Blanchet [4] after Khovanov’s original theory turned out to have a sign ambiguity,
see Jacobsson [19] and Bar-Natan [2]. However, with a bit more care, functoriality
can also be achieved in the original construction, see Vogel [46] and joint work with
Stroppel [14, 13]. Functoriality for N = 3 was proved by Clark [11].

We prove the general functoriality statement in a framework that is different to and
more general than Khovanov–Rozansky’s construction in [25], as we will now explain.

1.1. Foams. Khovanov–Rozansky link homology theories can be defined, or at least
described, in many different languages, ranging from those of algebraic geometry,
(higher) representation theory and symplectic geometry to those of various incarnations
of string theory. The construction most suitable for this paper is combinatorial and
uses a graphical calculus of webs and foams.

Foams play precisely the same role for Khovanov–Rozansky’s link homologies that
Bar-Natan’s cobordisms [2] play for the original Khovanov homology. They can
be seen—in a straightforward way—as a categorification of the Murakami–Ohtsuki–
Yamada state-sum model [38] for the Reshetikhin–Turaev link invariants of type A,
or, equivalently, the graphical calculus for the corresponding representation category,
see Cautis–Kamnitzer–Morrison [10].

Foams were first used by Khovanov for the definition of an sl3 homology [24],
then extended to the higher rank cases by Khovanov–Rozansky [26] and used in the
construction of corresponding link homologies by Mackaay–Stošić–Vaz [35].

More recently, Queffelec–Rose [39], building on joint work with Lauda [30] and
earlier work of Mackaay and his coauthors [33, 34] on low-rank cases, placed foams
in the context of an instance of categorical skew Howe duality. This led to a better
understanding of foams as well as a comparison of foam-based link homologies with
those obtained via other constructions, see the introduction of Mackaay–Webster [37]
for a summary.

A disadvantage of the approach of [39] is that their 2-categories of foams only
describe a certain part of the web and foam calculus envisioned by Khovanov–Rozansky
and Mackaay–Stošić–Vaz. However, Robert–Wagner [42] have closed this gap while
maintaining backward compatibility with [39], and we will use their approach for our
paper after explaining its essential features in Section 2.3.

1.2. Tangles and canopolises. Proving the functoriality of a link homology theory
essentially amounts to checking coherence relations between various ways of composing
maps associated to Reidemeister moves and other basic link cobordisms that represent
isotopic cobordisms. These relations are the movie moves as presented by Carter–
Saito [8, Chapter 2]. As demonstrated by Bar-Natan [2], it is extremely useful to be
able to perform the required computations locally, i.e. in a small portion of the link
diagram.
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Fortunately, the construction of link homologies via foams immediately extends to
the case of tangles and the invariants have essentially tautological planar composition
properties. This is captured in Bar-Natan’s notions of canopolises (a.k.a. planar
algebras in categories) and canopolis morphisms, which we recall in Section 2.2.

A key idea for our paper is Bar-Natan’s insight [2, Section 1.1.1] that the canopolis
framework allows a low-effort proof of the fact that Khovanov–Rozansky link homologies
are functorial up to scalars. This amounts to a significant proof shortcut, as it then
only remains to ensure that these scalars are equal to one. However, this is still a
formidable challenge.

1.3. Colors. The Murakami–Ohtsuki–Yamada state-sum model in fact determines
the slN Reshetikhin–Turaev invariants of links whose components are colored by
fundamental representations of quantum slN , i.e. the quantum exterior powers of the
usual vector representation. One categorical level up, foams immediately provide an
analogous extension of Khovanov–Rozansky’s original uncolored—i.e. colored only
with the vector representation—construction to the colored case. We will work in
this generality and record the coloring of tangle components with exterior power
representations by remembering only the exterior exponents and placing them as labels
next to the respective strands.

Colored Khovanov–Rozansky homologies have been first constructed by Wu [48]
and Yonezawa [50] in a technically difficult generalization of the approach in [25]. That
their homological invariants can be recovered via foams was proven in full generality
by Queffelec–Rose [39].

1.4. Deformations. Arguably the most important tool available for studying Kho-
vanov homology is Lee’s deformation [31]. While producing uninteresting link invariants
on its own, this deformation naturally appears as the limit of a spectral sequence
starting at Khovanov homology, which has been used to extract hidden topological
information about knots, see e.g. Rasmussen [40].

A key idea for our paper is Blanchet’s use of a Lee-type deformation for proving
the functoriality of a modified version of Khovanov homology. In [4] he first proved
functoriality up to scalars along Bar-Natan’s strategy and then computed these
scalars—and showed them to be equal to one—by working in the much simpler setting
of the deformation. This approach draws on the combinatorial interpretation of Lee’s
deformation provided by Bar-Natan–Morrison [3].

The Khovanov–Rozansky link homologies of higher rank are subject to an even
richer deformation theory, the exploration of which started with the work of Gornik [17]
and Mackaay–Vaz [36] in the uncolored case and Wu [49] in the colored case. These
deformations were classified in joint work with Rose [43] and used in the proof of a
family of physical conjectures about link homologies [47] by the third named author.

In this paper we draw on the deformed foam technology as developed in [43] to
provide a functoriality proof for colored Khovanov–Rozansky invariants following
Blanchet’s strategy.

1.5. Equivariance. An important feature in Blanchet’s argument is that, if functori-
ality holds up to scalars, then these scalars can be computed in a Lee-type deformation.
To avoid arguing that these scalars are preserved along Lee-type spectral sequences,
we will let our invariants take values in a homotopy category of chain complexes and
not take homology right away. One advantage of this is that the undeformed, colored
link invariant, as well as all its deformations, can be obtained as specializations of a
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unifying equivariant theory. We then prove that the equivariant theory is functorial
up to scalars and that all its specializations inherit this property with the same scalars.
It then only remains to compute these scalars in the Lee-type deformation, which is
significantly simpler.

The first equivariant, or universal, link homology can be traced back to Bar-
Natan [2] and Khovanov [23] and it encapsulated both Khovanov homology and Lee’s
deformation. The case N = 3 was treated by Mackaay–Vaz [36]. The extension to
higher rank is due to Krasner [27] in the uncolored case, and due to Wu [49] in the
colored case. The adjective equivariant refers to the fact that these link homologies
associate GLN -equivariant cohomology rings of Grassmannians to colored unknots.

Fortunately, the foam technology of Robert–Wagner [42] is already formulated in
the necessary generality to be compatible with the equivariant, colored Khovanov–
Rozansky link homologies.

1.6. Integrality. The foam based link invariants of Mackaay–Stošić–Vaz [35] can
be defined integrally and they give rise to integral versions of Khovanov–Rozansky
homologies. These invariants take values in bigraded abelian groups rather than vector
spaces. Similarly, in the colored case, Queffelec–Rose [39, Proposition 4.10] have
observed that their foam-based construction can also be defined over the integers. The
same is true for the construction using Robert–Wagner’s foams [42].

We have decided to present the results of this paper using the ground ring C. This
is for notational convenience as it allows us to treat the canopolis of equivariant
foams and all its specializations in the same framework and using the same language.
However, with minimal adjustments our proof of functoriality also works over Z, and
we will comment on these variations when necessary.

1.7. Module structure. The Khovanov–Rozansky homologies of links are modules
over cohomology rings of Grassmannians that appear as the invariants of colored
unknots. These actions have a natural interpretation using functoriality: Given a
basepoint on a colored link, one can place a small unknot of matching color next to the
basepoint. This has the effect of tensoring the link invariant with the corresponding
cohomology ring. The action of this ring is then determined by the map associated to
the cobordism that merges the unknot with the link at the basepoint.

These module structures carry additional information. For example, Hedden–Ni [18]
have shown that they enable Khovanov homology to detect unlinks. Furthermore,
module structures are important for the comparison with Floer-theoretic link invariants,
see for example Baldwin–Levine–Sarkar [1], and the construction of reduced, colored
Khovanov–Rozansky homologies [47].

1.8. Outlook. We finish by commenting on some interesting topics that we will not
investigate further in this paper.

First, it is necessary to emphasize that we prove functoriality under link cobordisms
modulo isotopies in R3 × [0, 1]. It is tempting to view Khovanov–Rozansky homology
as an invariant of links in S3 = R3 ∪ {∞} and cobordisms in S3 × I. Indeed, links
generically miss the point ∞ and cobordisms between them generically miss ∞× [0, 1].
However, the same is no longer true for isotopies between link cobordisms.

As we have learned from Scott Morrison, proving the functoriality of Khovanov–
Rozansky homology in S3 would require checking only a single type of additional movie
move, which however is non-local. Functoriality in S3 is also the only missing ingredient
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for upgrading Khovanov–Rozansky link homologies to invariants of 4-manifolds with
links in their boundary.

A second question concerns the functoriality properties of the extension of colored
Khovanov–Rozansky link homologies to invariants of tangled webs, embedded in R3,
under foams embedded in R3 × [0, 1] modulo isotopy. Tangled webs can naturally be
accommodated in the framework that we use in this paper and foams embedded in
4-space can be encoded as movies of tangled webs. Isotopies of foams are represented
by a finite collection of movie moves, see e.g. work of Carter [7]. We expect that the
question of functoriality under foams can be investigated similar as in Section 4.

Next, Khovanov–Rozansky homologies can be extended to the case of colorings
by other irreducible representations. Using the framework in the present paper,
there are at least two distinct ways of doing this. One uses finite resolutions of
these representations by fundamental representations and is analogous to Khovanov’s
construction for N = 2 in [22], see also Robert [41] for the case N = 3. In the other
approach, the invariants for other colors are computed by inserting infinite twists into
fundamentally colored cables of the original link, see Rozansky [44] for the case of
N = 2 and Cautis [9] for the general case. For both constructions it is an interesting
question whether they satisfy functoriality properties and admit module structures.

Finally, it is tempting to speculate about foam-based constructions of link homology
theories that categorify the Reshetikhin–Turaev invariants outside of type A. Our wish
list for such constructions includes that they should allow deformations along splittings
of the corresponding Dynkin diagram, as it is the case in type A [43]. This might
eventually help to prove functoriality properties for link homologies in other types,
but more importantly, it gives hints how to construct the necessary foam theories.

Very preliminary results in this direction have been obtained in [15] where a kind of
type D foams were constructed using the foams that appear in the present paper for
N = 2. However, it is not clear whether these foams can be used to define type D link
homologies. Even one categorical level down, there are different web calculi outside of
type A [28, 45], not all of which are compatible with Reshetikhin–Turaev invariants.

1.9. Structure of the paper. In Section 2 we introduce the canopolis of GLN -
equivariant foams by first defining a free canopolis of foams in Section 2.2 and then
imposing additional relations in Section 2.3. In Sections 2.4 and 2.5 we collect a
number of foam relations, which we need in the proof of functoriality.

In Section 3 we recall the construction of the categorical tangle invariant and study
the chain maps induced by Reidemeister moves.

Finally, the functoriality proof in Section 4 is split into the up-to-scalar check in
Section 4.2 followed by the computation of the scalars in Section 4.3.

Remark. For the figures in this paper we have chosen colors that can also be
distinguished in grayscale print. N
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2. GLN -equivariant foams

2.1. Symmetric polynomials. We start by briefly recalling several notions regarding
symmetric polynomials which we will need in this paper.

Let A be an alphabet of size |A| = a. We denote by Sym(A) the C-algebra of
symmetric polynomials in the alphabet A. Similarly, for alphabets Ai, we denote by
Sym(A1| · · · |Ar) the C-algebra of polynomials which are symmetric in each alphabet
separately. We view these symmetric polynomial rings as being graded by assigning
each variable the degree 2.

We denote the jth elementary symmetric polynomials in A by ej(A), and the jth
complete symmetric polynomial in A by hj(A). Recall that the first a of either give
an algebraically independent set of generators for Sym(A), i.e.

Sym(A) ∼= C[e1(A), . . . , ea(A)] ∼= C[h1(A), . . . ,ha(A)],

and that ej(A) = 0 for j > a.

Definition 2.1. Let A and B be two disjoint alphabets of sizes a and b. The
complete symmetric polynomials in the difference of these two alphabets are elements
of Sym(A|B) given by the generating function:∑

k≥0

hk(A− B)xk =

∏
B∈B(1−Bx)∏
A∈A(1−Ax)

.

The complete symmetric polynomials in A are recovered in the special case B = ∅, or
under the homomorphism setting the variables in B to zero:

hk(A) = hk(A− ∅) = hk(A− B)|B7→0.

Convention 2.2. Let P denote the set of all integer partitions. For a, b ∈ Z≥0 we
write P(a) for the set of partitions with at most a parts, and P(a, b) for the set of
partitions with at most a parts, all of which are of size at most b.

Partitions α = (α1, . . . , αa) can be identified with Young diagrams with αi specifying
the numbers of boxes in the ith row. Using this identification, let the total number of
boxes be denoted by |α| and let α denote the Young diagram obtained by reflecting α
along its main diagonal. If it is understood that α ∈ P(a, b), we write αc ∈ P(a, b) for
the Young diagram of the complement of α, whose rows are given by αc

a+1−j = b− αj
and boxa,b = ∅c for the full box Young diagram. Further, we write α̂ = αc for the
transpose of the complement of α.

Here is an illustrative example for a = 3, b = 4:

box3,4 = , α = , αc = , α̂ =

N



FUNCTORIALITY OF COLORED LINK HOMOLOGIES 7

Definition 2.3. Let α = (α1, . . . , αa) ∈ P(a) be a partition. Then the Schur polyno-
mial corresponding to α in the difference of alphabets A− B is given by:

sα(A− B) = det((hαi+j−i(A− B))1≤i,j≤a).

The Schur polynomials in A are recovered in the special case B = ∅ or under the
homomorphism setting the variables in B to zero:

sα(A) = sα(A− ∅) = sα(A− B)|B7→0. N
Recall that the Schur polynomials sα for α ∈ P(a) form a basis for the C-algebra

Sym(A) with structure constants for the multiplication given by the Littlewood-Ri-
chardson coefficients cγαβ , see e.g. [32, Section I.5]. This means for α, β ∈ P(a) that

sαsβ =
∑
γ∈P(a) cγαβsγ .

Example 2.4. ([49, Section 2.3], and also [29].) Let Gra denote the Grassmannian of
a-dimensional subspaces in CN . This carries an action of GLN and its GLN -equivariant
cohomology can be presented as follows, see e.g. [16, Lectures 6 and 7]:

H∗GLN
(Gra) ∼= Sym(A|S)

〈hN−a+i(A− S) | i > 0〉 ,

In fact, H∗GLN
(Gra) is a graded, free module of rank

(
N
a

)
over the equivariant coho-

mology of a point H∗GLN
(pt), which is isomorphic to the symmetric polynomial ring

Sym(S) in an alphabet S of size N . Moreover, H∗GLN
(Gra) has a homogeneous bases

over Sym(S) given by the Schur polynomials sα(A) (or, alternatively, sα(A− S)) with
α ∈ P(a,N − a).

Let tra : H∗GLN
(Gra) → Sym(S) denote the Sym(S)-linear projection onto the

Sym(S)-span of the Schur polynomial corresponding to boxa,N−a(A), adjusted by the

sign (−1)(
a
2) that we will explain in Remark 2.23. This trace satisfies

tra(sα(A)sβ(A− S)) = (−1)(
a
2)δα,βc , for any α, β ∈ P(a,N − a).(2.1)

This means that it defines a non-degenerate Sym(S)-bilinear form and, thus, a Frobenius
algebra structure on H∗GLN

(Gra). The corresponding (Poincaré) duality maps a basis

element sα(A) to (−1)(
a
2)sαc(A− S). N

Example 2.5. ([49, Section 2.3], and also [29].) Let again A and B denote alphabets

of size a and b. Note that Sym(A|B) is a free Sym(A ∪ B)-module of rank
(
a+b
a

)
with

homogeneous bases given by the Schur polynomials sα(A) (or, alternatively, sα(A−B))
with α ∈ P(a, b).

Let ζ : Sym(A|B)→ Sym(A ∪ B) denote the Sym(A ∪ B)-linear projection onto the
Sym(A ∪ B)-span of the Schur polynomial corresponding to boxa,b(A). This map,
which is known as the Sylvester operator, is of degree −2ab and satisfies

ζ(sα(A)sβ(B)) = (−1)|α̂|δα,β̂ , for any α ∈ P(a, b) and β ∈ P(b, a). N

2.2. Canopolises of webs and foams. One main toolkit used in this paper is the
canopolis formalism introduced by Bar-Natan [2, Section 8.2], which can be seen as
a categorification of Jones’ planar algebra formalism [20]. We will now describe a
canopolis of webs and foams between them.

Throughout this section, let S be a compact, planar surface, i.e. a surface with a
fixed embedding into R2.
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Definition 2.6. A web in S is a finite, oriented, trivalent graph, properly embedded
in S, together with a labeling of edges by elements of Z>0 satisfying a flow condition
at every trivalent vertex. Vertices with incoming labels a, b and outgoing label a+ b
are called merge vertices, the others split vertices. We illustrate them, and a trivial
web, in the case where S is a disk:

a
,

a+b

a b ,
a+b

a b

N
(2.2)

For the following definition, let V and W be two webs in S with identical boundary
data, i.e. they agree in a collar neighborhood of ∂S.

Definition 2.7. A foam F from V to W is a compact, two-dimensional CW-complex
(the particular CW structure on F is irrelevant in the following) with finitely many
cells, properly embedded in S × [0, 1], such that every interior point x ∈ F has
a neighborhood of one of the following three types, which are also illustrated in
Figure 2.3.

(I) A smoothly embedded two-dimensional manifold. The connected components
of the set of such points are are called the facets of F . Each facet is required
to be oriented, and we label it with an element of Z>0.

(II) The letter Y (the union of three distinct rays in R2, meeting in the origin)
times [0, 1]. The connected components of the set of such singular points are
called the seams of F . Every seam carries an orientation, which agrees with
the orientation induced by two of the adjacents facets, say of label a and b.
Then we also require that the third adjacent facet is labeled by a+ b and that
it induces the opposite orientation on the seam.

(III) The cone on the one-skeleton of a tetrahedron. We call the cone points singular
vertices, and they are contained in the boundary of precisely four seams and
six facets.

(2.3) (I) : 	
a

, (II) :

	
	 	a

b

a+b

, (III) : •
a

b

c

b+c

a+b

a+b
+c

Figure 1. Local models and orientation conventions.

Furthermore, F : V →W is required to satisfy the following conditions:

• The bottom boundary of F in S × {0} agrees with V with matching labels
and reversed orientations on the edges. The top boundary of F in S × {1}
agrees with W with labels and induced orientations. In particular, singular
seams are oriented down through merge vertices and up through split vertices
in the boundary webs.

• F restricted to S × [0, 1] over a collar neighborhood of ∂S is cylindrical, i.e. it
agrees with the restriction of V × [0, 1] to the same set.
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We identify foams which differ by an ambient isotopy relative to the boundary in
S× [0, 1]. Then the set of webs in S with fixed boundary data assemble into a category
with morphisms given by foams mapping from their bottom boundary web to their
top boundary web. If S is a disk, we call these disk categories. N

Remark 2.8. Using classical Morse theory inductively on the skeletons of foams,
one can show that one can isotope foams F into generic position so that seams and
facets have finitely many non-degenerate critical points for the height function. Then
the horizontal slices F ∩ S × {z} are webs for all but finitely many z ∈ [0, 1]. See
Remark 2.10 for the local foams around these singularities. N

Webs in disks carry a natural planar algebra structure. The operations in this
planar algebra are given by gluing disks with embedded webs into holed disks with
embedded arcs, such that web boundaries are glued in a way that respects the labelings
and orientations. An example of a holed disk is given in Figure 2.

3

2 1

3

2 1

3

2

2

1

1 −→ 3

2

2

1

1

Figure 2. Planar composition of webs.

In fact, every web in a disk is generated, in a planar algebra sense, by trivial, merge
and split webs as in (2.2).

The planar algebra operations via holed disks immediately extend to planar algebra
operations on foams via holed cylindrical foams. Since these operations are compatible
with the categorical composition of stacking foams (see e.g. Figure 3), the disk
categories assemble into a canopolis in the sense of Bar-Natan [2, Section 8.2].

a

Figure 3. Planar algebra composition of two saddles.

Definition 2.9. We denote by Foam∗ the canopolis assembled from the categories
of foams over disks, as described above. N

Remark 2.10. For a foam in general position, the critical points for the height
function have neighborhoods modeled on the following foams.
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If the critical point is contained in the interior of a facet, then we get Morse-type
handle attachments

a
, a ,

a

(2.4)

each with two possible orientations. If the critical point is contained in the interior of
a seam, then we get the digon creation and annihilation, and zip and unzip foams

b
a

a+b

,
b
a

a+b

,

b

a

a+b

,

b

a
a+b

(2.5)

b
a+b

a

,

a+b
a b

,

a

a+b

b

,
a+b

b

a

(2.6)

each of which admits two orientations. Finally, singular vertices of the following types
appear:

•
a

b

c

b+c

a+b

a+b
+c

,

b

a

a+b−c

a−c

a+b
c

•(2.7)

For the rightmost foam we assume that a > c. These foams furthermore exist in
upside-down versions, and each one admits two orientations. N

We let ZFoam∗ denote the Z-linear extension of Foam∗ where, additionally, every
facet of foams may be decorated by a partition. If gluing two foams results in a foam
having two partitions on one facet, it is to be replaced by a Z-linear combination of
decorated foams according to a rule modeled on the multiplication of Schur polynomials:

a

a

α

β
=

∑
γ∈P(a)

cγαβ

a

γ

Here cγαβ are the Littlewood-Richardson coefficients. Using this rule, we will abuse
notation and place Z-linear combinations of partitions on foam facets. We also use the
interpretation of such linear combinations as symmetric polynomials in an a-element
alphabet associated to the facet. This is especially useful when several facets are
involved, in which case decorations can be encoded as partially symmetric polynomials.

Definition 2.11. The morphisms in ZFoam∗ admit a Z2-grading. The bidegrees of
the foam generators in Remark 2.10 are as follows.

• Cups and caps with label a are of bidegree (a2,−a).
• Saddles with label a are of bidegree (−a2, a).
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• Digon creation and annihilation foams of label a and b as in (2.5) are of
bidegree (−ab, 0); the ones in (2.6) are of bidegree (b(a+ b),−b).

• Zip and unzip foams of label a and b as in (2.5) are of bidegree (ab, 0); the
ones in (2.6) are of bidegree (−b(a+ b), b).

• The first foam in (2.7) is of bidegree (0, 0), the other one of bidegree (ab, 0).
• A decoration by a partition α is of bidegree (2|α|, 0).

We define the degree degF of a foam F in ZFoam∗ to be the integer obtained by
collapsing its bidegree from (k, l) to k +Nl. N

Alternatively, the bidegree of a foam can be defined as a weighted Euler characteristic,
compare e.g. with [42, Definition 2.3].

For the following definition we consider H∗GLN
(pt) ∼= Sym(S) as our ground ring.

Recall that this ring acts on GLN -equivariant cohomology in the natural way, see also
Example 2.4.

Definition 2.12. Let SFoam∗ be the additive closure of the Sym(S)-linear, Z-graded
canopolis determined by the following data.

• Objects are formal q-degree shifts of webs qsV , where V ranges over the
objects of ZFoam∗, and s ∈ Z.

• Morphisms are Sym(S)-linear combinations of foams in ZFoam∗ such that

F : qlV → qkW ⇒ degF = k − l.
Hereby we consider the variables of S to be of degree two.

• Categorical composition is given by the Sym(S)-bilinear extension of the
composition in ZFoam∗.

• Planar composition is given by the Sym(S)-multilinear extension of the planar
composition in ZFoam∗. N

The process of taking the additive closure of a canopolis amounts to allowing
formal direct sums of objects as well as matrices of morphisms between them, with
composition given by matrix multiplication.

2.3. The canopolis of GLN -equivariant foams. In this section we will describe
how to take a quotient of SFoam∗ that allows the construction of equivariant type A
link homologies. The construction uses the foam evaluation of Robert–Wagner [42] to
run the universal construction as presented by Blanchet–Habegger–Masbaum–Vogel [5]
for categories of closed webs and foams between them. Finally, this is extended to the
canopolis framework.

2.3.1. Closed foam evaluation and the universal construction. The main ingredient
that we need is a way of evaluating closed foams. This gives a Sym(S)-linear evaluation

ev : EndSFoam∗(∅)→ Sym(S).

As our evaluation we choose the GLN -equivariant version of the explicit and combina-
torial evaluation described by Robert–Wagner in [42, Section 2.2] where the reader can
find the details. Actually, Robert-Wagner work with torus-equivariant cohomology
and thus, with C[S] as the ground ring. But this simply amounts to an extension of
scalars from Sym(S).

Remark 2.13. We believe that Robert-Wagner’s evaluation coincides (up to minor
renormalization details) with the evaluation provided by the Kapustin–Li formula as
formulated by Khovanov–Rozansky [26] and used by Mackaay–Stošić–Vaz [35] in the
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construction of foam categories and link homologies. We choose to refer to Robert-
Wagner because their evaluation is explicit, combinatorial and is already formulated
in the equivariant case. N

First, we focus on the disk category with empty boundary in SFoam∗, i.e. the
category of closed webs in the disk and foams between them, which we denote by
SFoam∗(cl). Since this category is Sym(S)-linear, we can consider the following
representable functor to the monoidal category Sym(S)-mod of free Sym(S)-modules:

F : SFoam∗(cl)→ Sym(S)-mod,

V 7→ HomSFoam∗(∅, V ),(
V

F−→W
)
7→
(

HomSFoam∗(∅, V )
F◦−−−−→ HomSFoam∗(∅,W )

)
.

The Sym(S)-modules F(V ) associated to webs V are too large to be useful. However,
given any G ∈ HomSFoam∗(V, ∅), one considers the map

φG : F(V )→ Sym(S), φG(∅ F−→ V ) = ev(G ◦ F ).

This map is well-defined since the evaluation depends only on the combinatorial data
of the foams and is, thus, invariant under isotopy. The intersection I(V ) =

⋂
G ker(φG)

taken over all G ∈ HomSFoam∗(V, ∅) gives a submodule of F(V ). One then sets

F(V ) = F(V )/I(V ).

We think of F(V ) as the space of all embedded foams with boundary V modulo such
Sym(S)-linear combinations that evaluate to zero under arbitrary closures. Naturally,
F extends to a Sym(S)-linear functor

F : SFoam∗(cl)→ Sym(S)-mod.

This might be regarded as a (singular) TQFT for the category of closed webs and
foams between them.

In the following we collect some useful properties, which are implicit in [42, Section 3]:

• F(∅) ∼= Sym(S).
• F(V tW ) ∼= F(V )⊗Sym(S) F(W ).
• The modules F(V ) are free over Sym(S) with graded rank computed by the

MOY-evaluation of webs as in [38].
• F restricts to a 1+1-dimensional TQFT with values in Sym(S)-mod on the

subcategory of SFoam∗(cl) consisting of a-labeled 1-manifolds and a-labeled
cobordisms between them. This TQFT is determined by the Frobenius algebra
given by the GLN -equivariant cohomology of the Grassmannian Gra from
Example 2.4.

• The decorations on foam facets are related to basis elements of H∗GLN
(Gra)

via the Sym(S)-linear composite isomorphism

Sym(A|S)

〈hN−a+i(A− S) | i > 0〉
∼=−→ H∗GLN

(Gra)
∼=−→ F(©a),

sα(A) 7→ aα
, α ∈ P(a,N − a),

where ©a denotes the a-labeled circle object.
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2.3.2. Foams modulo relations. Instead of continuing to work with the functor F , one
can form a quotient category of webs and foams, by identifying foams that are sent
to equal Sym(S)-linear maps under F . To this end, we define SFoam(cl) to be the
category with the same objects as SFoam∗(cl), but with morphism spaces

HomSFoam(cl)(V,W ) = HomSFoam∗(cl)(V,W )/ ker(F).

We denote the functor induced by F on SFoam(cl) by the same symbol.
The category SFoam(cl) is obtained from SFoam∗(cl) by imposing the relations

in ker(F). Many of these relations are of a local nature and some important ones are
listed in the next section. Before that, however, we would like to extend this quotient
to the canopolis framework.

2.3.3. Canopolization. Let F : V →W be an arbitrary foam in SFoam∗ between webs
with boundary. Abstractly, F can be considered as a foam from the empty web to the
closed web formed by its boundary ∂F = W ∪φ V , which we consider as embedded

in a disk. Here V denotes the web V reflected in a line and ∪φ stands for the planar
algebra operation which connects the appropriate boundary points of the webs W and
V . Accordingly, there exist invertible canopolis operations:

bend: HomSFoam∗(V,W )
∼=−→ HomSFoam∗(∅,W ∪φ V ).(2.8)

Informally, such an operation is given by bending (or clapping) the entire boundary
of the foam to the top of the cylinder. In the canopolis, this can be achieved by planar
composition with the identity foam on V and then pre-composing with a cup foam
that is obtained by rotating V along a half-circle. The inverse operation is given by
bending the part of the boundary down again. These operations are inverse because
their composites transform foams only by isotopies. Here is a prototypical example:

aV

V

bend−−−→ a
V ∪φ V

∅

We define

I(V,W ) = bend−1(I(W ∪φ V )) ⊂ HomSFoam∗(V,W ).

It is easy to see that that the collection of submodules I(V,W ) is preserved under
arbitrary canopolis operations in SFoam∗.

Definition 2.14. Let SFoam denote the Sym(S)-linear, Z-graded canopolis obtained
as a quotient of the canopolis SFoam∗ by the canopolis ideal determined by the
collection I(V,W ) ⊂ HomSFoam∗(V,W ). N

The subcategory of webs and foams without boundary in SFoam is naturally
identified with SFoam(cl) as introduced above.

Remark 2.15. The graded Sym(S)-rank of the morphism space HomSFoam(V,W )
can be computed via the bending trick (2.8) as a rescaled MOY-evaluation of the
closed web W ∪φ V . The rescaling depends on the number and labels of critical points
introduced in the bending. From this, one can deduce the complex dimensions of
the graded components of the morphism spaces in HomSFoam(V,W ). We give some
examples that are used later:
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• The endomorphism space of a web without vertices, i.e. a trivial tangle, is
one-dimensional in degree zero, spanned by the identity foam.

• The morphism spaces between the empty web and a circle of label a are
one-dimensional in degree −a(N − a), spanned by the cup and cap foam
respectively.

• The morphism spaces between the two distinct webs that consist of two anti-
parallel strands of label a are one-dimensional in degree a(N − a), spanned by
the saddle foam. N

Remark 2.16. (Integrality.) In fact, the closed foam evaluation of Robert–Wagner
takes values in the ring of symmetric polynomials in S with integer coefficients SymZ(S),
see [42, Main Theorem]. Accordingly, all constructions in this section can be performed
over the integers as well, and all morphism spaces are free SymZ(S)-modules. N

2.4. GLN -equivariant foam relations. Below we collect a number of relations that
hold in SFoam and that we will need for our main result. In writing these relations
we shall decorate foam facets by symmetric polynomials. These correspond to Sym(S)-
linear combinations of Schur polynomials, which in turn correspond to partitions. We
will switch freely between these conventions.

We start with the following two lemmas, which follow directly from the discussion
in Sections 2.3.1 and 2.3.2.

Lemma 2.17. The neck-cutting and sphere relations hold in SFoam:

a

= (−1)(
a
2)
∑

α∈P(a,N−a)

sαc

sα
a

a

,

a

sα
=

{
(−1)(

a
2), if α = boxa,N−a,

0, otherwise.
(2.9)

In the neck-cutting relations we mean sαc = sαc(A− S), but sα = sα(B), where A and
B are the alphabet on the cup and cap respectively. The sphere relations are true
both for Schur polynomials in A as well as those in A− S. �

We explain below in Remark 2.23 why the sign (−1)(
a
2) is necessary.

Lemma 2.18. The following relations hold in SFoam:

a

sα(A− S) = 0, if α /∈ P(a,N − a) or if a > N.

�

(2.10)

Proposition 2.19. The defining relations [39, (3.8) to (3.20)] of the foam 2-category
considered by Queffelec-Rose hold in SFoam. �

Proof. See [42, Proof of Proposition 4.2]. �
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Example 2.20. We give three examples of relations from Proposition 2.19 that we
use later:

(2.11)
b

a

a+b =
∑

α∈P(a,b)

(−1)|α̂|

b

a

sα̂

sα

This relation is a special case of [39, (3.14)] in which two facets carry the label zero.
This means the corresponding facets are to be erased and their boundary seams to be
smoothed out.

The second example illustrates the family of Matveev–Piergallini (MP) relations [39,
(3.8)]:

(2.12)

•

•
b+c

a+b

c

b

a
a+b

a+b
+c

=

c

b

aa+b
a+b
+c

Last, the decoration migration relations [39, (3.9)], which involve the Littlewood
Richardson coefficients:

(2.13)
sγ

a

b

a+b

=
∑
α,β

cγαβ

sα

sβ

a

b

a+b

If A, B and X are the alphabets on the facets of label a, b and a+ b respectively, then
this relation identifies symmetric polynomials in A ∪ B and X. N

The Sylvester operator from Example 2.5 allows a compact description of the blister
removal relations [39, (3.10)]:

Example 2.21. Let p ∈ Sym(A|S) and q ∈ Sym(B|S) be decorations on the front and
rear facets of a blister, respectively. Then we have the following relations in SFoam:

(2.14)
b q

a p

a+b

=

a+b

ζ(pq) = (−1)ab

a+b

a p

b q

N
Corollary 2.22. Consider the theta foam obtained from the left-hand side of (2.14)
by quotienting the boundary of the square to a point. Suppose that this foam carries
decorations p ∈ Sym(A|S), q ∈ Sym(B|S) and r ∈ Sym(X|S) on the facets of label a,
b and a+ b. Then this theta foam evaluates to the scalar tra+b(rζ(pq)) ∈ Sym(S) in
SFoam if we identify symmetric polynomials in A ∪ B and X via (2.13). �
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Remark 2.23. Corollary 2.22 and (2.11) explain why the sign in (2.1) and (2.9) is
necessary. Using the notation from Corollary 2.22, we can evaluate a theta foam in
two different ways:

∑
α∈P(a,b)

(−1)|α̂|
a

sα
p

b

sα̂
q

(2.11)
= a a+b b

p q
(2.14)

= (−1)ab
a+b

ζ(pq)

Thus, taking p = ∅ and q = boxb,N−b gives

tra(boxa,N−a)trb(boxb,N−b) = (−1)abtra+b(boxa+b,N−a−b).

Hence, fixing tr1(box1,N−1) = 1 determines the rest to be as in (2.9). N

Lemma 2.24. The following relations hold in SFoam for a ≥ b:

b

a

a−b

= (−1)b(a−b)

b

a

(2.15)

Here the middle annulus carries the label a − b. Similarly in case b ≥ a, but with
swapped orientation on the seams. �

Proof. We detach the middle facet from the rear facet via (2.11) at the expense of a
decoration

∑
α∈P(a−b,b)(−1)|α̂|sα(X)sα̂(B), where X and B are the alphabets on the

middle and rear facets. Removing the blister in the front facet gives zero, unless

α = boxa−b,b, see (2.14). Hence, only the coefficient (−1)|∅̂| = (−1)b(a−b) survives. �

2.5. Specializations and their relations. From now on, we let Σ = {λ1, . . . , λN}
be a set of N pairwise different complex numbers and consider the specialization
homomorphism of C-algebras

spΣ : Sym(S)→ C, p(S) 7→ p(Σ).

We define the canopolis ΣFoam as the C-linear canopolis obtained from SFoam by
specializing variables via spΣ. The objects in ΣFoam still carry q-degree shifts, but on
the level of morphism spaces, the grading is demoted to a filtration. In the following,
we abuse notation by writing spΣ for the induced C-linear canopolis morphism from
SFoam to ΣFoam, which respects the filtrations. It is clear that ΣFoam satisfies the
Σ-specialized versions of the foam relations already listed for SFoam.

Example 2.25. In the case N = 2 and Σ = {1,−1} the foams in ΣFoam have been
used by Blanchet [4, Section 4]. They give rise to a deformed link homology theory
that is analogous to Lee’s deformation [31] of Khovanov homology. N

Remark 2.26. Specializing all variables in S not to distinct numbers, but to zero
instead, one recovers a canopolis of webs and foams that can be used for the definition
of the (non-equivariant) colored Khovanov–Rozansky link homologies. The canopolis
ΣFoam can be seen as its generic deformation. Deformations obtained as other
specializations of the variables in S have been studied in [43]. N
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Lemma 2.27. The algebra of decorations on an a-labeled foam facet is the direct
sum of one-dimensional summands indexed by a-element subsets A ⊂ Σ. We denote
the corresponding idempotents by 1A and display them as

1A

Additionally, decorations p ∈ Sym(A) satisfy

(2.16) p(A) · 1A = p(A) · 1A,
i.e. they act on the A-summand via evaluation at A. �

Here we use that we work over C. However, Q would suffice as ground ring if Σ ⊂ Q.

Proof. See [43, Lemma 23] and also [43, Proof of Theorem 13]. �

Lemma 2.28. ([43, Lemma 23].) Let A, B and X subsets of Σ with |A| = a, |B| = a
and |X| = a+ b respectively. Then the following relation holds in ΣFoam:

1A

1B

1X

= 0, unless A ∪ B = X.

�

Lemma 2.29. Let A, B be alphabets of size a and b respectively. Then we have:

r(A,B) =
∑
α∈P(a,b) (−1)|α̂|sα(A)sα̂(B) =

∏
A∈A,B∈B (A−B).

From this we get r(B,A) = (−1)abr(A,B), and r(A,B) = 0, if A ∩ B 6= ∅. If X is
another alphabet, then r(A,B ∪ X) = r(A,B)r(A,X). If A ⊂ Σ, then we also have

r(A, Σ \ A) =
∑
α∈P(a,N−a) sα(A)sαc(A− Σ) =

∑
α∈P(a,N−a) (−1)|α̂|sα(A)sα̂(Σ \ A),

which is always non-zero. �

Proof. For the first equation, see e.g. [32, Section I.4, Example 5]. For the second
equation we use sβ(A− Σ) = (−1)|β|sβ(Σ \ A). �

We need to know how idempotent-colored foams behave with respect to the relations

found above. We let r(A) = (−1)(
a
2)r(A, Σ \ A).

Lemma 2.30. The following relations hold in ΣFoam:

1A

= r(A)

1A

1A

,
1A

= r(A)−1.

�

(2.17)

Proof. The first relation follows from the Σ-specialization of the neck-cutting rela-
tion (2.9) combined with (2.16) and Lemma 2.29. The relation for the sphere is
obtained by composing both sides of the neck-cutting relation (2.9) with a cap. �
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Lemma 2.31. The following relation holds in ΣFoam:

•

•

1B

1A

= r(A, B)

1B

1A

,

•

•

1B

1A

= r(A, B)

1B

1A

a+b

1A∪B = r(A, B)
1B

1A

a+b

�

Proof. These relations follow immediately from [39, Relations (3.13) and (3.14)] as
well as [43, Relation (4.7)], imported via Proposition 2.19, and (2.16). �

Remark 2.32. To reduce the complexity of computations appearing in Section 4, we
will use phase diagrams which show the interaction of foam facets with a chosen facet
(or union of facets) in a foam, see Figure 4.

•

1A

1B

1X

1Y

1Z

!

1B 1A

1A 1B

(1X,1Y,1Z)

=

1B 1A

1A 1B

(1X,1Y,1Z)

Figure 4. A phase diagram of a foam.

Here we adopt the convention that the facets lying in the drawing surface all
carry the standard orientation of R2. The facets in front of the drawing surface are
colored purple and those behind golden (and later also: cyan). For readers familiar
with the relationship between foams and categorified quantum groups (as developed
in [33, 34, 30, 39]), we emphasize that the orientation conventions in phase diagrams
are not identical to those used in the string diagrams of the skew Howe dual categorified
quantum group.

The first equations in Lemma 2.31 are simply

1B 1A

1B 1A

= r(A, B)

1B 1A

1B 1A

,

1A 1B

1A 1B

= r(A, B)

1A 1B

1A 1B

(2.18)
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The following phase diagrams represent associativity and MP relations on foams, which
hold in SFoam by Proposition 2.19:

= , =(2.19)

The relations obtained be reversing the orientation on all seams in (2.19) also hold.
Similarly, the pitchfork moves hold for all possible orientations on seams in SFoam,
see [39, Relations (3.28) and (3.29)] (imported via Proposition 2.19):

b+c

b c

a

=

b+c

b c

a
,

b+c

b c

a

=

b+c

b c

a
(2.20)

We will use several other versions of pitchfork relations, e.g.:

(2.21)

a

b+c

b c

=

a

b+c

b c

(2.22)

1A

1B∪C

1B 1C

= r(A, C)

1A

1B∪C

1B 1C

The relations of type (2.21) hold in SFoam and can be deduced from (2.20) via (2.19).
The relations of type (2.22) hold in ΣFoam and are obtained via (2.18). N

Lemma 2.33. With X ⊂ A, the following phase diagram relations hold in ΣFoam:

(1A,1B)1X =
r(X, B)

r(A \ X, X)
, (1B,1A)1X =

r(B, X)

r(X, A \ X)
(2.23)

= r(B, A) 1B 1A ,

1B 1A

1B 1A

= r(B, A)

1B 1A

1B 1A

(2.24)

1X 1X

1X 1X

(1B,1A) =
r(B, X)

r(X, A \ X)
1X 1X

1X 1X

(1B,1A) ,

1X 1X

1X 1X

(1A,1B) =
r(X, B)

r(A \ X, X)
1X 1X

1X 1X

(1A,1B)

�

(2.25)

Proof. Relation (2.23) is the shorthand notation for

1B

1A

1X

=
r(X, B)

r(A \ X, X)
1B

1A

which can be checked by detaching the annulus from the rear facet via (2.11) and
collapsing the resulting blister in the front facet via (2.31). The relations in (2.24)
and (2.25) follow analogously from the relations in Lemma 2.31 and MP relations. �
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Note that planar isotopies of phase diagrams relative to their boundary correspond
to isotopies of foams. Thus, relations obtained by isotoping any of the above relations
continue to hold.

3. Equivariant, colored link homology via foams and its specializations

3.1. Colored link homology. Given an additive, Sym(S)-linear canopolis C, we
obtain from it an additive, Sym(S)-linear canopolis of (bounded) complexes Kom(C)
and chain maps between them. On chain complexes, the planar algebra operation
is defined to take the planar composites of all chain groups, and the structure of
differentials between them is modeled on the tensor product of chain complexes. More
precisely, we require the inputs of all planar algebra operations to be ordered, which
determines the order in which the formal tensor product is taken and thus, the Koszul
signs in the differentials of the resulting tensor product complex.

Convention 3.1. The tensor product of two complexes (A∗, dA) and (B∗, dB) is
defined to be:

(A⊗B)∗ =
⊕

a+b=∗A
a ⊗Bb, d(A⊗B)∗ =

∑
a+b=∗(−1)bdAa ⊗ idBb + idAa ⊗ dBb

The reordering isomorphism A⊗B ∼= B⊗A is defined to act as (−1)ab times the swap
map Aa ⊗Bb → Bb ⊗Aa. Note that in the setting of a canopolis of chain complexes,
where the swap map is the identity, the reordering isomorphisms act as the identity,
except on terms of doubly-odd homological degree. This convention agrees with [12,
Appendix A.6.1]. N

Since null-homotopic chain maps form an ideal with respect to planar algebra
operations, it also makes sense to consider the homotopy canopolis of (bounded)
complexes K(C) with morphisms given by chain maps up to homotopy. Forgetting the
additional categorical structure in Kom(C) or K(C), we can also view both as planar
algebras. A detailed discussion of these constructions is given in e.g. [2, Sections 3
and 4.1]. All these notions extend to the graded setup as well.

Convention 3.2. All links and tangles, as well as their diagrams, are assumed to
be labeled (or colored) and oriented. Recall that two such tangle diagrams represent
the same tangle if and only if the diagrams can be obtained from each other via a
finite number of planar isotopies and Reidemeister moves as in Figure 10, i.e. the ones
displayed therein as well as their orientation and crossing variations. N

We consider the planar algebra of tangle diagrams TD, which is generated by single
strands, positive and negative crossings, as in Figure 5.

a , +:
a b

b a

, − :
a b

b a

Figure 5. Generators of TD.

Definition 3.3. Consider the map of planar algebras

(3.1) J·K : TD→ Kom(SFoam∗),

which is defined on generating tangle diagrams from Figure 5 as follows.
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• It maps the a-labeled strand to the corresponding web, regarded as a complex
concentrated in homological degree zero.

• It maps positive crossings with an overstrand labeled a and understrand
labeled b with a ≥ b to:

(3.2)

u

w
v

a b

b a
}

�
~

a≥b
= q−x

a b

b a
a−b

d+0−−→ q1−x

a b

b aa−b
+1

1

d+1−−→ · · ·

· · ·
d+b−2−−−→ qb−1−x

a b

b a
a−1

b−1

d+b−1−−−→ qb−x

a b

b a
a

b

Again, powers of q denote shifts in the q-degree, x = b(N − b) and the
underlined term is in homological degree zero. The differentials are given by
the foams in Figure 6.

• A positive crossing with labels b ≥ a is mapped to the complex obtained
from the one in (3.2) by reflecting webs in a vertical axis (and foams in a
corresponding plane) and swapping labels a and b.

• The complexes for the negative crossings are obtained from the positive
crossing complexes by inverting the q-degrees and the homological degrees,
and reflecting the differential foams in a horizontal plane. N

d+
k =

b

a

a

b

k
1

Figure 6. The differentials d+
k . (The other differentials are similar.)

Example 3.4. In case a = b = 1 the complexes assigned to positive and negative
crossings are of length two with differentials given by zip and unzip foams as in (2.5). N

Theorem 3.5. If TD and T ′D are two tangle diagrams representing the same colored,
oriented tangle, then JTDK ∼= JT ′DK holds in K(SFoam). That is, J·K is an invariant of
colored, oriented tangles. �

Proof. Any reordering of the crossings in a tangle diagram induces an isomorphism
between the respective invariants; so we disregard the ordering for the purpose of the
following proof. By virtue of the planar algebraic construction, it suffices to show that
the chain complexes associated to the tangles on both sides of each Reidemeister move
are chain homotopy equivalent.
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This result has already been proved in a variety of different categorifications of the
MOY calculus, so we refer to the literature and only comment on the slight variations
that we need.

The proof closest to our endeavour as regards generality has been given by Wu
in [49, Proof of Theorem 1.1] in the context of his equivariant, colored link homology
constructed via matrix factorizations. A proof purely in the language of webs and foams
(although non-equivariant and with slightly different foam relations) has been first
given by Mackaay–Stošić–Vaz [35, Section 7] for uncolored tangles. Queffelec–Rose [39,
Section 4.3] have provided proofs for the Reidemeister moves that we will call (R2+)
and (R3+) (see Section 3.3) for all colors. They have also described the behaviour of
the invariant under fork slides and fork twisting, see [39, Proofs of Theorem 4.7 and
Proposition 4.10]. These results immediately generalize to the equivariant setup with
ground ring Sym(S) in SFoam and—following Wu’s strategy [49]—guarantee that the
Reidemeister moves of type (R1), (R2–) and (R3–) hold for all colors if they hold in
the uncolored case. The latter is easily checked by hand, e.g. analogous to the proof
in [35, Section 7]. �

Remark 3.6. (Integrality.) Theorem 3.5 and its proof outlined above hold over Z.
In particular, the Reidemeister homotopy equivalences provided by Mackaay–Stošić–
Vaz [35, Section 7] are manifestly integral. In the colored case, the Reidemeister
homotopy equivalences used by Queffelec–Rose as well as their fork slides and fork
twists are also integral, see [39, Proposition 4.10]. N

Definition 3.7. Let LD be a colored, oriented link diagram. Then the equivariant,
colored Khovanov–Rozansky homology of LD is the bigraded, finite-rank Sym(S)-
module defined as

KhRS(LD) = H∗(F(JLDK)),

where F denotes the TQFT from Section 2.3.2. N

By Theorem 3.5, KhRS is invariant under Reidemeister moves and planar isotopies
up to explicit isomorphisms.

If one sets the variables in the alphabet S equal to zero before applying an analog
of the TQFT F in Definition 3.7, one obtains the (non-equivariant) bigraded, colored,
Khovanov–Rozansky link homologies of Wu [48] and Yonezawa [50], see [42, Proposi-
tion 4.2] and [39, Theorem 4.11]. In the uncolored case, these agree with the original
Khovanov–Rozansky link homologies [25].

More generally, the alphabet S can be specialized to any N -element multiset Σ of
complex numbers, and one obtains deformed Khovanov–Rozansky link homologies
KhRΣ, see [49, 43]. In the next section, we will explain this in detail for Σ = Σ.

Remark 3.8. We have chosen a grading convention which results in a tangle invariant
that respects the Reidemeister 1 move. Another natural grading convention leads to
shifts under the Reidemeister 1 move, but has the advantage of allowing invariance
under fork slide moves. We will not pursue this further in this paper. N

Remark 3.9. For the purpose of proving Theorem 3.5 it is not necessary to specify a
particular pair of inverse chain homotopy equivalences for each Reidemeister move.
Indeed, any such pair can be rescaled by a pair of inverse units in C. However, for
the purpose of defining chain maps associated to link cobordisms and for the proof of
functoriality, such a specification is necessary. Arguments as in Section 4.2 imply that
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the ambiguity is limited to rescaling by a unit in C, and we will choose a particular
scaling in Section 3.3. N
3.2. Generic deformations and Karoubi envelope technology. As before, let
Σ = {λ1, . . . , λN} be a set of N pairwise different complex numbers.

Lemma 3.10. ([43, Lemma 23].) In ΣFoam, the algebra of decorations on the identity
foam on a web W is the direct sum of one-dimensional summands. The corresponding
idempotents are given by colorings of all facets by idempotents as in Lemma 2.27,
which are admissible in the sense of Lemma 2.28, i.e. the associated subsets of Σ add
up around every singular seam. �

Recall that the Karoubi envelope Kar(C) of a category C has as object pairs (O, e),
where O is an object of C and e : O → O is an idempotent. The morphisms from (O, e)
to (O′, e′) are morphisms of C compatible with the idempotents, i.e. triples (e, f, e′)
with f : O → O′ such that f ◦ e = e′ ◦ f holds in C. In case C is additive, one can split
idempotents, i.e. by writing O = (O, id) and im(e) = (O, e), we get

O ∼= im(e)⊕ im(id− e) (in Kar(C)).
We will use a full subcategory of Kar(ΣFoam) which contains all idempotents identified
in Lemma 3.10.

Definition 3.11. Let ΣFoam denote the full additive, Sym(S)-linear subcategory of
Kar(ΣFoam) containing all objects of the form (W, c(W )idW ) as well as their q-degree
shifts. Here W is a web and c(W )idW is an admissibly idempotent-colored identity
foam on W as in Lemma 3.10. N

We shall think of the objects (W, c(W )idW ) as idempotent-colored webs. ΣFoam
embeds as a full subcategory of ΣFoam since the identity foam on every web can be
split into the sum of its idempotent-colorings. Correspondingly, uncolored webs can
be split into direct sums of idempotent-colored webs. For example:

a ∼=
⊕
A⊂Σ

A (in ΣFoam).

Here the direct sum runs over all a-element subsets A of Σ. Another example is:

a+b

a b ∼=
⊕
A,B⊂Σ,
A∩B=∅

A∪B

A B

(in ΣFoam).

Note that the idempotent on the edge of the biggest label is determined by the other
two due to the admissibility condition from Lemma 2.28.

We will denote by J·KΣ : TD→ K(ΣFoam) ⊂ K(ΣFoamN) the Σ-specialization of
J·K, obtained via post composition with spΣ from Section 2.5. From Theorem 3.5 we
immediately obtain the following specialization:

Theorem 3.12. If TD and T ′D are two tangle diagrams representing the same colored,

oriented tangle, then JTDKΣ ∼= JT ′DKΣ holds in K(ΣFoam). That is, J·KΣ is an invariant
of colored, oriented tangles. �

The next lemma provides a decomposition of the complexes associated to crossings,
which dramatically simplifies the computation of Σ-deformed link invariants. By
convention, we indicate the homological degree using powers of t.
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Lemma 3.13. The complex associated to a link in K(ΣFoam) is isomorphic to a
complex with trivial differentials, e.g. for a ≥ b we have locally:

(3.3)

u

w
v

a b

b a
}

�
~

Σ

∼=
⊕
A,B⊂Σ

A B

B A

∼=
⊕

k=0,...,b

⊕
A,B⊂Σ,
|B\A|=k

tk

A B

B A
AB

BA �

Here and in the following, we display a tangle diagram TD with strands colored
by idempotents as a shorthand notation for the corresponding idempotent-colored
subcomplex of JTDKΣ in K(ΣFoam). We also write XY = X \ Y for any two subsets
X, Y ⊂ Σ. If a web edge is colored with XY = ∅, then it is to be deleted from the
diagram. The complexes associated to other crossings split analogously, with negative
crossings receiving negative shifts in homological degree.

Proof. This is a special case of [43, Lemma 60]. �

In the case of Σ = {1,−1} and a = b = 1, the decomposition (3.3) precisely recovers
Blanchet’s decomposition in [4, Figure 17].

3.3. Simple resolutions and Reidemeister foams. In this section we study the
complexes associated to link diagrams in the Σ-deformation and the homotopy equiva-
lences between them, which are induced by Reidemeister moves. This will also lead
us to determine a particular scaling for the Reidemeister homotopy equivalences in
K(SFoam) that is necessary for the functoriality proof in Section 4.

As a first step, we apply Lemma 3.13 to all crossings in the link diagrams appearing
in Reidemeister moves, and we immediately obtain:

Lemma 3.14. The following isomorphisms hold in K(ΣFoam).

u

v
a

}

~

Σ

∼=
⊕
A⊂Σ
|A|=a

t0

A A

A

,

u

ww
v

a b

}

��
~

Σ

a≥b∼=
⊕
A,B⊂Σ,

|A|=a,|B|=b

t0

A B

A B

AB

BA

AB

AB

BA

u

ww
v

a b

}

��
~

Σ

a≥b∼=
⊕
A,B⊂Σ,

|A|=a,|B|=b

t0

A B

A B

AB

AB BA

AB BA

,

u

www
v

a b c

}

���
~

Σ

a≥b≥c∼=
⊕

A,B,C⊂Σ,
|A|=a,|B|=b,|C|=c
k=|BA|+|CA|−|CB|

tk

A B C

C B A

CA

AC

BC

CB

BA

AB

The Σ-deformed complexes associated to link diagrams appearing in other versions of
Reidemeister moves have analogous simplifications. �

Lemma 3.15. Under the direct sum decompositions of complexes from Lemma 3.14,
the homotopy equivalences associated to Reidemeister moves are given by diagonal ma-
trices whose non-zero entries are invertible, idempotent-colored foams in ΣFoam. The
analogous result also holds for all possible colorings and orientations of Reidemeister
moves, which do not appear in Lemma 3.14. �
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Proof. This follows from the facts that J·KΣ is a tangle invariant in K(ΣFoam) by
Theorem 3.12, and that any non-zero foam between colored webs preserves the
idempotent-colors on the boundary edges of such webs. �

For the following, we choose (once and for all) an ordering of Σ = {λ1, . . . λN}.

Definition 3.16. Our favourite idempotent-coloring of a tangle diagram TD is given
by coloring every a-labeled strand with the idempotent 1A for A = {λ1, . . . , λa} ⊂ Σ.

Lemma 3.13 implies that the subcomplex of JTDKΣ corresponding to this favourite
idempotent-coloring simplifies to a single colored web of minimal combinatorial com-
plexity, which we will call the simple resolution of TD. N

Example 3.17. The simple resolutions of the tangle diagrams from Lemma 3.14 are
obtained as follows:

A A

7−→
A A

A

,

A B

A B

a≥b7−→

A B

A B

AB

AB

AB

,

A B

A B

a≥b7−→

A B

A B

AB

AB

AB

,

A B C

C B A

a≥b≥c7−→

A B C

C B A
AB

BC
AC ,

A B C

C B A

a≥b≥c7−→

A B C

C B A

BC

AB

AC

Here and in the following there are no homological degree shifts. Link diagrams which
appear in other oriented versions of Reidemeister moves have similar simple resolutions.
We will discuss this variety in more detail below. N

Lemma 3.18. The Reidemeister 1 and 2 homotopy equivalences in K(ΣFoam) are
realized on simple resolutions by complex multiples of the foams in Figure 7.

(R1) If a Reidemeister 1 move in a strand of label a increases the writhe of the link
diagram, then the corresponding foams between simple resolutions has to be
rescaled by r(A). For example:

A A

r(A)F1−−−−→
A A

G1−−→
A A

,

A A

F1−→
A A

r(A)G1−−−−→
A A

(R2+) For Reidemeister 2 moves between strands of labels a, b with parallel orien-
tation, the foams F+

2 and G+
2 are normalized by a sign ε = (−1)min(a,b)(a−b)

depending on which strand is pushed over. For example:

A B

A B

εF+
2−−−→

A B

A B

G+
2−−→

A B

A B

,

A B

A B

F+
2−−→

A B

A B

εG+
2−−−→

A B

A B
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(R2–) For Reidemeister 2 moves between strands of labels a, b and opposite orienta-
tions, the foams F−2 and G−2 are also normalized by ε as follows:

A B

A B

F−2−−→
A B

A B

εG−2−−−→
A B

A B

,

A B

A B

εF−2−−−→
A B

A B

G−2−−→
A B

A B

�

F1 =

1A

1A

, F+
2 =

1A

1B

1AB

1B

1A

, F−2 =

1A

1B

1A

1B

1AB

G1 =

1A

1A

, G+
2 =

1A

1B

1AB

1B

1A
, G−2 =

1A

1B

1B

1A

1AB

Figure 7. The (R1), (R2+) and (R2–) foams.

Proof. We first check the case of the Reidemeister 2 moves. Using Remark 2.15 and
working in K(SFoam), it is easy to see that the shown foams F±2 and G±2 (without
their idempotent decoration) are uniquely determined up to a complex scalar by their
degrees. This scalar is non-zero since these foams become invertible in ΣFoam. It
follows that F+

2 and G+
2 are mutually inverse up to a scalar ε, which is determined

by Relation (2.15). This already holds in SFoam. On the contrary, F−2 and G−2
only become mutually inverse up to the same sign ε when considered in ΣFoam and
decorated by idempotents as shown. This follows from the relations in Lemma 2.33.
Now we can rescale the Reidemeister 2 homotopy equivalences in SFoam to obtain
units as in the statement of the lemma.

Regarding Reidemeister 1 moves, degree considerations in SFoam using Remark 2.15
imply that the relevant foams are uniquely determined (up to a non-zero complex
scalar) in the cases where we claim that no extra scalar appears. In the other cases,
the foams carry a decoration and are determined (up to a unit) by the requirement to
be a component of a chain map. More specifically, the decoration is the result of a
neck-cut (2.9) and the scalar r(A) results from specializing it (2.17). It follows that
these decorated foams give mutual inverses in ΣFoam, and so we choose to scale the
Reidemeister 1 homotopy equivalences in SFoam accordingly. �

Next, we describe the chain homotopy equivalences induced by Reidemeister 3
moves of type (R3+), whose local model involves tangles with a cyclic sequence of
boundary orientations given by three outward pointing arcs followed by three inward
pointing arcs, see e.g. (3.4). The remaining Reidemeister 3 moves, of type (R3–), have
a boundary orientation sequence alternating between inward and outward pointing
and will be dealt with at the end of this section.
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Lemma 3.19. The homotopy equivalences induced by (R3+) moves are realized on
simple resolutions by foams F+

3 and G+
3

(3.4)

A B C

ABC

F+
3−−→

A B C

ABC

G+
3−−→

A B C

ABC

which can be represented by phase diagrams with at most two trivalent vertices. See
Figure 7 for illustrations of these foams in the case a ≥ b ≥ c. �

F+
3 = • •

1A

1B

1C

1C

1B

1A

1BC

1AB

1AB

1BC

1AC

1AC

, G+
3 = • •

1A

1B

1C

1C

1B

1A

1BC 1AB

1AB 1BC1AC

1AC

Figure 8. Examples of (R3+) foams.

Proof. As in the proof of Lemma 3.18, we deduce that Reidemeister 3 homotopy
equivalences restrict to invertible, idempotent-colored foams on simple resolutions.
Degree considerations in SFoam determine these (up to a unit) to be foams that
admit phase diagrams with at most two trivalent vertices. Note that they are the
foams of lowest combinatorial complexity between these simple resolutions. Below
we display phase diagrams for three labeling patterns and check that they represent
mutually inverse foams in ΣFoam. As before, this determines our preferred scaling of
the Reidemeister 3 homotopy equivalences in SFoam.

For a ≥ b ≥ c, the composition G+
3 ◦ F+

3 simplifies to the identity foam as follows:

1AB1AC1BC

1AB1AC1BC

1BC 1AB = r(AB, BC)−1

1AB1AC1BC

1AB1AC1BC

1BC 1AB = r(BC, AB)

1AB1AC1BC

1AB1AC1BC

1BC

1AB =

1AB1AC1BC

1AB1AC1BC
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Here we have applied (2.24) and (2.18). In the case a ≥ c ≥ b the foam G+
3 ◦ F+

3

simplifies as:

1CB1AC1AB

1CB1AC1AB

1CB 1AB

1AC

=

1CB1AC1AB

1CB1AC1AB

1AB

1CB1AC = (−1)b(c−b)

1CB1AC1AB

1CB1AC1AB

1AC
1AC

= r(AC, CB)

1CB1AC1AB

1CB1AC1AB

1AC 1CB

=

1CB1AC1AB

1CB1AC1AB

Here we used (2.19), (2.24), (2.23) and (2.25). In the similar case b ≥ a ≥ c we get:

1BA1AC1BC

1BA1AC1BC

1BC
1BA

1AC

=

1BA1AC1BC

1BA1AC1BC

1BC

1BA 1AC = (−1)c(b−a)

1BA1AC1BC

1BA1AC1BC

1AC

1AC = r(BA, AC)

1BA1AC1BC

1BA1AC1BC

1AC1BA

=

1BA1AC1BC

1BA1AC1BC

The other compositions F+
3 ◦G+

3 and all other cases can be checked to produce identity
foams in a completely analogous way. Thus, we have shown that the (R3+) foams F+

3

and G+
3 are mutually inverse foams, which proves the statement. �

For Reidemeister 3 moves with alternating boundary orientations, i.e. type (R3–),
we use the following composite of (R2–), (R2+) and (R3+):

! ! ! ! !(3.5)

This is also to be interpreted as a template for variations of the (R3–) moves
with different crossing types than the one shown. In all cases, the active strand (the
one participating in all (R2) moves) is chosen to be the first strand encountered on
the boundary when proceeding in the counterclockwise direction, starting from the
boundary of the top strand. This is indicated by arrows in (3.5). We denote the
induced composite foams on simple resolutions by F−3 and G−3 :

A B C

ABC

F−3−−→

A B C

ABC

G−3−−→

A B C

ABC

Example 3.20. In the case a ≥ b ≥ c, the foams F−3 and G−3 are given by the
following compositions reading left-to-right and right-to-left respectively:

(3.6)

A B C

C B A

F−2 //

A B C

C B A

F+
2 //

τG−2

oo

A B C

C B A

F+
3 //

εG+
2

oo

A B C

C B A

G+
2 //

G+
3

oo

A B C

C B A

G−2 //

εF+
2

oo

A B C

C B A

τF−2

oo

Here ε and τ are signs coming from our scaling conventions. N
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As for the other Reidemeister moves, the foams F−3 and G−3 , which are defined on
simple resolutions in ΣFoam, determine a particular scaling of the (R3–) homotopy
equivalences in SFoam that we henceforth adopt.

Example 3.21. In the case where all labels on strands are equal, the simple resolutions
of the tangle diagrams appearing in Reidemeister moves and the foams between them
are especially simple: (R2+) and (R3+) moves take the form of identity foams between
identity webs, and (R2–) are realized by cup- and cap-saddles. In the (R3–) move
from (3.6), the purple edges disappear and the resulting foam is a monkey saddle as
in [2, Figure 9]. N

Above, we have determined a particular scaling for the Reidemeister move homotopy
equivalences in K(SFoam). Even though this process depends on the choice of a
particular specialization Σ, the result is quite rigid.

Lemma 3.22. (Integrality.) The rescaled Reidemeister move homotopy equivalences
are integral. �
Proof. Consider a particular Reidemeister move and denote by f and g the mutually
inverse rescaled homotopy equivalences, which satisfy

(3.7) id− f ◦ g = d ◦ h+ h ◦ d,
where d is the differential in the domain of g, h is a homotopy and all of these
morphisms are built from foams with coefficients in C. By the integral version of
Theorem 3.5, see Remark 3.6, there also exist mutually inverse integral homotopy
equivalences f ′ and g′ as well as an integral homotopy h′ such that

(3.8) id− f ′ ◦ g′ = d ◦ h′ + h′ ◦ d.
Above we have seen that the foams appearing in f and g on simple resolutions
are already integral. This implies that f ′ and g′ are integer multiples of f and g,
respectively.

Let z1, z2 ∈ Z be such that f ′ = z1f and g′ = z2g. Substituting in (3.8) and
subtracting from it a multiple of (3.7) gives

(1− z1z2)id = d ◦ (h′ − z1z2h) + (h′ − z1z2h) ◦ d.
Since the domain of g is not a contractible chain complex, this implies z1z2 = 1.
Consequently, z1 = z2 = ±1 and so f = ±f ′ and g = ±g′ are integral. �

4. Functoriality

4.1. The canopolis of tangles and their cobordisms in 4-space. In Section 3.1
we have encountered the planar algebra TD of colored, oriented tangles. Now we
extend it to a canopolis.

Definition 4.1. Let TD be the canopolis determined by the following data.

• The objects are given by colored, oriented tangle diagrams in disks D with an
ordering of the crossings. We regard such diagrams as actual colored, oriented
tangles, embedded in D × [0, 1].

• The morphisms (besides crossing reordering isomorphisms) are 2-dimensional
colored, oriented cobordisms between tangles, embedded in D × [0, 1]× [0, 1],
cylindrical in a neighborhood of the boundary, with matching boundary
orientation on the top boundary and opposite one on the bottom, modulo
isotopy relative to the boundary.
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• The categorical composition is given by gluing cobordisms vertically.
• The planar algebra operation by gluing horizontally and concatenating orders

of crossings. N

If a cobordism C between tangles is in generic position, then the horizontal slices
Cz = C ∩ (D × [0, 1] × {z}) give tangle diagrams, except for at most finitely many
z ∈ [0, 1]. At such a critical point, the tangle diagram Cz−ε transforms into the tangle
diagram Cz+ε by a Morse or a Reidemeister move, see Figure 9 for examples.

a

MGH

,
a

a

a

a

MGS

,
a

a

MG1

,
a b

a b

MG2

,
a b c

a b c

MG3

Figure 9. Examples of movies of generating cobordisms.

Between these critical values, the diagrams Cz differ only by planar isotopy. As
a result, a cobordism C in generic position can be represented by a movie of tangle
diagrams, whose consecutive frames show precisely the transformation of horizontal
slices across a single critical value. Such movie presentations of cobordisms are not
unique, but their ambiguity can be controlled, as we recall next. For this, we use a
more rigid version of TD in which movie moves represent cobordisms uniquely:

Definition 4.2. Let TD∗ be the canopolis with the same objects and canopolis
operations as TD, but with morphisms given by cobordisms rigidly built from Morse
and Reidemeister type cobordism generators, without allowing isotopy. N

By definition, morphisms in TD∗ can be uniquely represented by movies of tangle
diagrams, whose frames differ by a single Morse or Reidemeister type cobordism
(together with a crossing reordering). The ambiguity of this presentation for cobordisms
in TD, where we allow isotopies, is described in the following proposition.

Proposition 4.3. The rigidly built cobordisms in TD∗, which are identified under
the projection TD∗ → TD are precisely those which can be related by finite sequences
of the relations shown and explained in Figures 10, 11 and 12 as well as their variations
obtained from changing orientations and the height of strands. �

These relations between cobordism movies are colored, oriented versions the movie
moves as presented by Carter–Saito in [8, Chapter 2], but numbered as in [2, Section 8].

Proof. By forgetting colors and orientations, any isotopy of cobordisms in TD is, in
particular, an isotopy of cobordisms as studied in [8, Chapter 2]. Hence, it can be
written as a finite sequence of the movie moves therein. Remembering the coloring
data and the orientation again, we see that the original isotopy in TD can be written
as a finite sequence of the colored, oriented movie moves. �
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a

a

a

MM1

,

a

a

a

MM2

,

a b

a b

a b

MM3

,

a b

a b

a b

MM4

,

a b c

a b c

a b c

MM5

Figure 10. The reversible movie moves, which say that doing and
undoing Reidemeister moves is equivalent to doing nothing.

a

b c

a

b c

a

b c

a

b c

a

b c

MM6

,

a a a a

MM7

b

a

b

a

b

a

b

a

b

a

b

a

MM8

,

a b a b a b

MM9

d

c

b

a

d

c

b

a

d

c

b

a

d

c

b

a

d

c

b

a

d

c

b

a

d

c

b

a

d

c

b

a

d

c

b

a

MM10

Figure 11. The reversible movie moves, which show movies equiva-
lent to doing nothing if read left- or rightwards.

Now, we extend the definition of J·K to a canopolis functor

J·K : TD∗ → K(SFoam)

by assigning (homotopy classes of) chain maps to the generating cobordisms in Figure 9.
To cups, saddles and caps, we associate the chain maps given by acting with the
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a a

a a

a

a a

MM11

left right

,
a

a

a

a

a

a

MM12

left right

,

a aa a

a aa a

a aa a

MM13

left right

a

a

a

a

a

a

b b b b

b b

MM14

left right

,

b

a

a

b

a

a

b

a

a

b

a

a

b

a

a

b

a

a

MM15

left right

Figure 12. The non-reversible movie moves. The columns show
equivalent movies when read down- or upwards.

corresponding foam from (2.4) on every chain group. To Reidemeister cobordisms
we assign the corresponding Reidemeister homotopy equivalences with the scaling
identified in Section 3.3. Finally, the crossing reordering isomorphisms are sent to the
corresponding reordering isomorphisms in K(SFoam).

Remark 4.4. By construction, J·K assigns homotopy inverse chain maps to Reide-
meister moves and their inverses. The chain maps assigned to movies from Figure 10
are thus, homotopic to the corresponding identity chain maps and we express this by
saying that J·K respects the movie moves MM1–MM5, see Theorem 3.5. N

The main goal of this paper is to show that J·K assigns equal (homotopy classes
of) chain maps to cobordism movies which are related by one of the remaining movie
moves MM6–MM15, and thus:

Theorem 4.5. (Functoriality.) The canopolis functor J·K : TD∗ → K(SFoam)
factors through a functor

J·K : TD→ K(SFoam). �
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The proof of this theorem is contained in the following two sections. First we use
an abstract argument to see that J·K respects movie moves up to scalars in C. Finally,
in Section 4.3, we compute these scalars via the Σ-deformation and find them to be
equal to one.

4.2. Functoriality up to scalars. We follow Bar-Natan’s strategy [2, Section 8] to
show that J·K respects movie moves up to scalars in C. The following Lemma contains
the key idea of this strategy.

Lemma 4.6. Let TD be a diagram of a tangle which is isotopic (without fixing
boundary points) to a trivial tangle. Then the space of degree zero endomorphisms of
JTDK ∈ K(SFoam) is one-dimensional over C. �

Proof. Since planar composition with crossings on the boundary is an invertible
operation, the problem reduces to the case where TD is a trivial tangle diagram
supported in homological degree zero, see [2, Lemmas 8.7, 8.8 and 8.9]. For such we
have already observed in Remark 2.15 that the space of degree zero endomorphisms is
one-dimensional. �

Proposition 4.7. The movie moves hold up to scalars in K(SFoam). �

Proof. For the reversible movie movies from Figure 11, it follows immediately from
Lemma 4.6 that the chain map associated to the complicated movie agrees up to a
complex scalar with the identity chain map. Additionally, since it is a composition of
homotopy equivalences, it is invertible, and thus, non-zero.

For the non-reversible movies from Figure 12 we first check that the morphism spaces
between the initial and final frames of the movies are one-dimensional over C in the
relevant degrees. For MM11 we have already seen this and MM13 is treated analogously
after expanding the crossing into a chain complex. For the others movie moves, one can
cut boring scenes from the movie during which only homotopy equivalences happen.
It remains to analyze frames differing by Morse moves. The corresponding morphisms
spaces have been identified to be one-dimensional in Remark 2.15. This shows that the
chain maps associated to the two sides of such a movie move agree up to a scalar. �

At this point, the non-reversible movie moves might hold only trivially, i.e. both
sides might represent the zero chain map. However, in the next section we shall see
that these maps are never zero.

Remark 4.8. (Integrality.) The proof of functoriality up to scalars over Z is completely
analogous. Here we use that all morphism spaces are free SymZ(S)-modules, see
Remark 3.6. N

4.3. Computing the scalars. It remains to compute the scalars by which the chain
maps associated to the two sides of a movie move MM6–MM15 might differ. We check
this on the Σ-deformations.

Lemma 4.9. If the movie moves hold non-trivially in K(ΣFoam), then they hold
non-trivially in K(SFoam). �

Proof. Since we already know that the movie moves hold in K(SFoam) up to scalars
in C, these scalars can be computed after specializing to K(ΣFoam) and further
embedding in K(ΣFoam). The assumption guarantees that all these scalars are all
equal to one. �
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Lemma 4.10. If the movie moves hold non-trivially on simple resolutions, then they
hold non-trivially in K(ΣFoam). �

Proof. By specializing Proposition 4.7, we see that, up scalars in C, the movie moves
hold in K(ΣFoam). Next, if two chain maps agree up to a scalar, this scalar can be
computed by comparing the chain maps restricted to a subcomplex where one of them
acts non-trivially. Here we choose the subcomplex in K(ΣFoam) given by a simple
resolution. �

In the following, we shall compute the chain maps appearing in the movie moves
MM6–MM15 when restricted to simple resolutions. We will find that the chain maps
on both sides of each movie move agree and are non-zero. This will satisfy the
assumption in Lemma 4.10 and consequently Lemma 4.9 and, thus, complete the proof
of Theorem 4.5.

Remark 4.11. The simple resolutions of a tangle diagram are invariant under inter-
changing any number of positive and negative crossing (up to q-degree shifts which we
ignore here). Moreover, thanks to Convention 3.1 and the fact that simple resolutions
of crossings are supported in even homological degree (namely zero), we do not need
to consider reordering isomorphisms, since they all act by the identity. Altogether,
this allows us to reduce the number of different variants of movie moves which we
need to check.

However, the maps associated to Reidemeister cobordisms are usually dependent
on the relative sizes of the labels on strands as well as the height ordering of strands.
In checking the movie moves, we shall display one such variant for each choice and
comment on the others. N

Lemma 4.12. The movie move MM6 holds on simple resolutions. �

Proof. MM6 has two essentially different versions depending on the relative orientation
of the strands between which Reidemeister 2 moves happen. The first version involves
two (R2+) and (R3+) moves. For a ≥ b ≥ c it is given on simple resolutions as:

A B C

B C A

AB

AC
εF+

2 //

A B C

B C A

AB

AC
BC

BC
F+

3 //

G+
2

oo

A B C

B C A

BC

AC
AB

BC
G+

3 //

G+
3

oo

A B C

B C A

BC

BC
AB

AC
G+

2 //

F+
3

oo

A B C

B C A

AB

AC

εF+
2

oo

Here ε = (−1)c(b−c). The composite foam for reading left-to-right is as follows.

(−1)c(b−c)

••
•

•

1A

1B

1C

1B

1C

1A
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We compute that this foam is equal to the identity foam by simplifying its phase
diagram using the relations obtained in Section 2.5.

(−1)c(b−c)

1AC1AB

1AC1AB

1BC

1BC

1AC

1AB

=(−1)c(b−c)

1AC1AB

1AC1AB

1BC1AC

1AB

1BC

=
(−1)c(b−c)

r(BC, AB)

1AC1AB

1AC1AB

1BC

1BC

1AB

=

1AC1AB

1AC1AB

1BC1AB =

1AC1AB

1AC1AB

Here we have used (2.19), (2.24), (2.23) and (2.18). Since this movie move is composed
out of homotopy equivalences, its inverse right-to-left read version also gives the
identity on simple resolutions. The cases of relative orderings of colors differing from
a ≥ b ≥ c and, more generally, all other versions of MM6 which involve (R2+) moves
are proved analogously.

The second version of the movie move MM6 not only involves two (R2–) moves,
but also an (R3–) move, whose associated chain map we have defined as a composition
of one (R3+) and several (R2±) chain maps. The composition of these maps can be
read off as a the outer cycle of (R3+) and (R2±) chain maps in the following diagram,
starting at the (marked) tangle diagram on the left.

Our task is to see that this cycle is equivalent to the identity chain map on the complex
associated to the left tangle diagram. First note that the final (R2–) move in the
cycle far-commutes with the four moves preceding it. The resulting composition is
indicated by dashed arrows, which now involve the middle tangle diagrams. Next,
observe that the first and last step in the dashed cycle are inverse (R2–) moves. The
detour through the tangle diagram on the left can thus, be cut from the dashed cycle.
Similarly, there is another detour through the tangle diagram on the top right, which
can be cut out by MM9 (which is proved independently in Lemma 4.15). It remains
to confirm that there is no monodromy around the dashed rhombus. After omitting
the top left crossing from the diagrams, which does not participate in these moves, we
recognize the required check as a comparison of two ways of performing a (R3+) move.

a

b c

!
a

b c

!
a

b c

! a

b c

! a

b c
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The absence of monodromy can be checked on simple resolutions, e.g. for a ≥ b ≥ c:

C A B

B A C

AB

BC

AC

F+
3 //

C A B

B A C

AC

BC

AB

G+
3

oo

εF+
2 //

C A B

B A C

AC
BC

AB
AC

AC

G+
2

oo

F+
3 //

C A B

B A C

AC

AC

AB

BC

AC

G+
3

oo

εG+
2 //

C A B

B A C

AB

BC

AC

F+
2

oo

Again, ε = (−1)c(b−c), and we have rotated the webs to have boundary orientations
pointing upward. A routine calculation using phase diagrams now verifies that the
composite from left-to-right (and vice versa) is the identity.

Note that all other variants of MM6 involving two (R2–) moves can be proven
similarly using the short-cut strategy from above. Variants with a relative orderings
of colors differing from a ≥ b ≥ c can be treated analogously. �

Lemma 4.13. The movie move MM7 holds on simple resolutions. �

Proof. For the version displayed in Figure 11, we get the following behavior on simple
resolutions:

r(A)

1A

1A :
A A

F1 //

A A

A
r(A)F1

//

r(A)G1

oo

A A

A

A
G−2 //

G1

oo

A AF−2

oo

The foam displayed on the left gives the left-to-right composition of chain maps
on simple resolutions. The idempotent-colored sphere cancels with the scalar r(A)
by (2.17). The remaining foam is isotopic to the identity. The other variants have
analogous proofs. �

Lemma 4.14. The movie move MM8 holds on simple resolutions. �

Proof. The version of this movie move that is displayed in Figure 11 has the following
behavior on simple resolutions if a ≥ b:

A A

B

B

AB r(B)F1
//

A A

B

B

AB

B

εF+
2 //

G1

oo
A A

B

B

A A

B

B

AB AB AB

G+
2

oo

G+
3

��

A A

B

B

AB

r(B)F1

//

A A

B

B

AB

BG1oo

εF−2

//

A A

B

B

A A

B

B

AB AB AB

F+
3

OO

G−2oo
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Here ε = (−1)b(a−b). Note that, due to the involvement of only two different labels,
the foams F+

3 and G+
3 are trivial. The composite, thus, takes the following form.

(−1)b(a−b)r(B)

1A

1B

1A

1B

1AB

In this illustration we have omitted a trivial part to the foam. The sign (−1)b(a−b)

and the scalar r(B) precisely cancel with the scalars appearing in (2.15) and (2.17)
when we delete the purple annulus and remove the resulting 1B-colored sphere on the
right hand side of the diagram. The result is isotopic to an identity foam.

The reversed reading direction, the case b ≥ a and all other variations obtained by
changing orientations or crossings are proved analogously. In each case, a foam of the
above type (possibly with changed orientations and colorings) is simplified to give
scalars as above. These precisely cancel with the normalizations of the Reidemeister
foams since one always encounters a (R1) foam and its inverse, one essentially trivial
(R3+) foam as well as (R2+) and (R2–) foams in inverse pairs. �

Lemma 4.15. The movie move MM9 holds on simple resolutions. �

Proof. This move has essentially two variants, which consist of either two (R2+) or
(R2–) moves. For a ≥ b they take the following form on simple resolutions:

A B

B A

AB
ε′F+

2 //

A B

B A

B

A

A

B

AB

AB

AB

ε′G+
2 //

εG+
2

oo

A B

B A

AB
εF+

2

oo ,

A B

B A

AB

εF−2 //

A B

B A

B A

A B
AB

εG−2 //

G−2

oo

A B

B A

AB

F−2

oo

Here ε and ε′ are the signs coming from the scaling of the Reidemeister foams, but
which are irrelevant as they cancel in the composition. The composite foams are
isotopic to identity foams, e.g. for the compositions from left to right we get:

1B

1A

1A

1B

1AB
,

1B

1A

1A

1B

1AB

The case a < b can be proven analogously. �

Lemma 4.16. The movie move MM10 holds on simple resolutions. �

Proof. This movie move exists in a large number of variants, all of which are equivalent
modulo far-commutation and the already established MM6 by a beautiful argument
of Clark–Morrison–Walker [12, Proof of MM10]. This directly extends to the colored
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case and we only need to check the variant of MM10 displayed in Figure 11 for
a ≥ b ≥ c ≥ d. It is given on simple resolutions as the following composite starting at
the top left diagram:

A D

B C

C B

D A

G+
3 //

A D

B C

C B

D A

G+
3 //

A D

B C

C B

D A

G+
3 //

A D

B C

C B

D A

G+
3

��

A D

B C

C B

D A

F+
3

\\

A D

B C

C B

D A

F+
3

oo

A D

B C

C B

D A

F+
3

oo

A D

B C

C B

D A

F+
3

oo

The composite of the first four maps G+
3 is given by the following foam:

(4.1)

• •

• •
• •

• •

1A

1B

1C

1D

1D

1C

1B

1A

,

1CD1BD1BC1AD1AC1AB

1AB1AC1BC1AD1BD1CD

1BC 1AD

1BD

1AC

The composite of the remaining four maps F+
3 is given by the foam obtained from

the one above by reflecting in a line perpendicular to the green facets. The complete
movie is thus represented by a phase diagram , which is symmetric in the origin of
R2, the lower half of which is displayed in (4.1). It remains to show that this phase
diagram represents the identity foam. As a first step, we focus on the interaction of
purple and golden facets on the second green upright plane. This allows us to draw
orientations on the phase diagram and the following simplification:

(4.2)

1BD 1AC

1BD 1AC

1CD 1BC 1AB

1CD 1BC 1AB

=

1BD 1AC

1BD 1AC

1CD 1BC 1AB

1CD 1BC 1AB

=
1

r(BC, AB)
r(CD, AC)

1BD 1AC

1BD 1AC

1CD 1BC 1AB

1CD 1BC 1AB

=
r(AB, BD)

r(BC, AB)

1BD 1AC

1BD 1AC

1CD 1BC 1AB

1CD 1BC 1AB
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The outer two purple seams are completely separated from the rest of the diagram
and will not be displayed in subsequent computations.

In the second step, we aim to simplify the golden facets of the foam. For this we
observe that can locally apply relations of the form:

(4.3)

1BD 1AB

1AC 1CD

1AD = r(BC, Y)

1BD 1AB

1AC 1CD

1AD

1BC 1CD

1BC 1AB

= r(BC, Y)

1BD 1AB

1AC 1CD

1AD

1BC 1Y

1BC 1Y

1AB

1CD

=

1BD 1AB

1AC 1CD

1BC 1Y

1AB

1CD

Here Y = AB ∪ CD. After pushing the cyan facets outwards in a manner analogous to
the first step in (4.2), we can perform the final sequence of simplifications. For this,
we start with two applications of relations of type (4.3) (with parallel running purple
and cyan strands in the middle):

r(AB, BD)

r(BC, AB)

1AD1BC

1BC1AD1BD 1AC

1BD 1AC

1AC 1BD

1AD

1AD

1BC

1CD

1AB

1CD

1BC

1AB

1AB

1CD

1BC =
r(AB, BD)

r(BC, AB)

1AD1BC

1BC1AD1BD 1AC

1BD 1AC

1AC 1BD

1BC 1BC

1BC 1BC

1CD1AB

1AB 1CD r(AB, CD)

r(AB, BC)
r(CD, BC)

1AD1BC

1BC1AD1BD 1AC

1BD 1AC

1AB

1CD

1

r(CD, BC)
r(AB, BC)

1AD1BC

1BC1AD1BD 1AC

1BD 1AC

1Y

1CD

1AB

1BC

=
r(CD, AB)

r(BC, CD)
r(AB, BC)

1AD1BC

1BC1AD1BD 1AC

1BD 1AC

1BC 1BC

1AB1CD

1BC

=
(−1)(a−b)(b−c)

r(CD, AB)

1AD1BC

1BC1AD1BD 1AC

1BD 1AC

1AB

1CD

In these steps have indicated the interaction of golden facets with purple and cyan
ones, but we do not draw orientations.

The simplification use the phase diagram relations from Section 2.5, which also
exhibit the last diagram as an identity foam in disguise. �

We skip MM11 as this just encodes an isotopy relation. For the remaining non-
reversible movie moves, we denote the chain maps corresponding to cups, saddles and
caps by M0, M1 and M2.

Lemma 4.17. The movie move MM12 holds on simple resolutions. �
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Proof. The movie on left-hand side in Figure 12 is given on simple resolutions by:

∅
M0 //

A

M0 //

M2

oo

AAr(A)M2

oo

From the right-hand side we get:

∅
M0 //

A

M0 //

M2

oo

AAr(A)M2

oo

These composites differ from the former ones only by isotopies. �

Lemma 4.18. The movie move MM13 holds on simple resolutions. �

Proof. Again, we compare the movies on the left- and right-hand sides in Figure 12
on simple resolutions:

A

A

A

A

M0 //

A

A

A

A

A

M1 //

r(A)M2

oo

A

A

A

A

M1

oo

A

A

A

A

M0 //

A

A

A

A

A

M1 //

r(A)M2

oo

A

A

A

A

M1

oo

These foams differ only by isotopies. �

Lemma 4.19. The movie move MM14 holds on simple resolutions. �

Proof. Again, we compare the movies on the left- and right-hand sides in Figure 12
on simple resolutions for a ≥ b:

A

A

M0 //

A

B

A

εF+
2 //

M2

oo

A

AB

AB

A

A

B B

G+
2

oo ,

A

A

M0 //

A

B

A

εF−2 //

M2

oo

A

AB

AB

A

A

B B

G−2

oo

The scalars are identical and the foams are isotopic, e.g. reading left-to right gives:

1A

1A
1B1AB

,

1A

1A1B

1B1AB

The case b ≥ a and a second variant with different relative orientations is proved
analogously. �

Lemma 4.20. The movie move MM15 holds on simple resolutions. �
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Proof. In the left- and right-hand cases from Figure 12, the movie takes the following
form on the simple resolutions for a ≥ b:

B B

A

A

A

A

F+
2 //

B B

A

A

A

A

A

B

AB AB M1 //

εG+
2

oo B B

A

A

A

A

AB

B

AB
M1

oo

B B

A

A

A

A

F−2 //
B B

A

A

A

A

A

B

AB AB

M1 //

εG−2

oo B B

A

A

A

A

AB

B

AB
M1

oo

As before, it remains to compare the composite foams since the scalars are the same.
For reading left-to-right we get the following two isotopic foams:

1A

1A

1B

1AB

1B

,

1A

1A

1B

1AB

1B

The other reading direction, the case b ≥ a, as well as the variant obtained by switching
orientations of the a-labeled strands work similar. �

Remark 4.21. (Integrality.) We know that also in the integral case, the chain maps
on both sides of the movie moves differ by at most a scalar. That these scalars are
all equal to one follows by extending scalars to C, specializing via spΣ and using the
results of this section. This is possible since the scaling for Reidemeister homotopy
equivalences used here is integral by Lemma 3.22. N
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