
ALGEBRAIC PROPERTIES OF ZIG-ZAG ALGEBRAS

MICHAEL EHRIG AND DANIEL TUBBENHAUER

Abstract. We give necessary and sufficient conditions for zig-zag algebras and certain
generalizations of them to be (relative) cellular, quasi-hereditary or Koszul.
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1. Introduction

Throughout, we let Γ denote a finite, connected, simple graph, and we work over an
arbitrary field k.

The main statements. Let Z� = Z�(Γ) be the zig-zag algebra associated to Γ. The purpose
of this paper is to show the following.

Theorem A. Z� is cellular if and only if Γ is a finite type A graph. Z� is relative cellular
if and only if Γ is a finite or affine type A graph.

Further, in all cases where Z� is (relative) cellular, the path length endows it with the
structure of a graded (relative) cellular algebra.

Theorem B. Z� is never quasi-hereditary.

Theorem C. Z� is Koszul if and only if Γ is not a type ADE graph.

Additionally, we give an algorithmic construction for the minimal linear projective resolu-
tions of simple Z�-modules.

Let further ZC
� = ZC

�(Γ) be the zig-zag algebra with a vertex-loop condition (vertex

condition for short) at some fixed set of vertices C 6= ∅. Using the same ideas as for Z� we
can also prove:

Theorem A ′. ZC
� is cellular if and only if Γ is a finite type A graph and the vertex condition

is imposed on one leaf. ZC
� is relative cellular in exactly the same cases.

Theorem B ′. ZC
� is quasi-hereditary if and only if Γ is a finite type A graph and the vertex

condition is imposed on one leaf.

Theorem C ′. ZC
� is always Koszul.

As far as we can tell, Theorems A, B, A ′, B ′ and C ′ are new, while Theorem C appears in
[MV96] or [EE07], where the theorem is proven for the preprojective algebra (which is the
Koszul dual of the zig-zag algebra in case Γ is bipartite), and in [Dub17] whenever Γ has a
circle. However, our explicit methods (inspired by [Ben08]) to prove Theorem C, constructing
the resolution explicitly using Chebyshev polynomials, seem to be new as well.
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Remark 1.1. We like to stress two things: First, the restrictions on Γ being finite, connected
and loopless can be relaxed, and we imposed them mostly for convenience. Second, we will
always assume that C 6= ∅. The only reason for this is that we want to treat our main
statements separately, i.e. there is no problem to allow C = ∅ in most of the arguments which
we are going to use, and ZC

� is in fact a strict generalization of Z� = Z∅�. (Although we will

formulate ZC
� as a quotient of Z�, we think of it as a quasi-hereditary cover of Z�, since this

is what happens in the case of a type A graph.) N

Zig-zag algebras in the literature. Zig-zag algebras are around for many years, see e.g. [Wak80]
for an early reference. Further, as shown in e.g. [HK01], they appears in various places in
modern mathematics, see also for example [KS02], [KMS09], [EK16], [EL17], [MT16] etc.,
and seems to play an important role for finding connection between different fields. Similarly,
the algebra ZC

� comes from considerations in modular representation theory or representation

theory at roots of unity, see e.g. [AT17], [QS16], or category O, see e.g. [Str03] for some
explicit calculations of quivers for category O.

Note that, as follows from our main theorems and their proofs, ZC
�(A) with vertex condition

imposed on one leaf is a graded cellular, quasi-hereditary, Koszul algebra, which makes it
quite special. Indeed, it has some very nice spectral properties.

Towards generalizations. A striking question is how zig-zag algebras can be generalized, and
how to control them algebraically.

There are at least two different generalizations of zig-zag algebras for which our methods
seems to be applicable: either the one from [Gra17], generalizing the connection to e.g. the
preprojective algebras, Iyama’s higher representation types and categorical group actions, or
the one from [MMMT18, Section 5C], generalizing the connections to e.g. 2-representation
theory, affine Hecke algebras and modular representation theory. In both cases the spectral
properties of the underlying graphs seem to play a crucial role and we hope that our methods
presented here generalize to those algebras. In particular, the generalizations of zig-zag
algebras from [MMMT18, Section 5C] are usually not connected to preprojective algebras, and
their quasi-hereditary covers are similar in spirit to ZC

� (by adding certain vertex conditions),
and our paper might help to understand algebraic properties of these algebras.

Acknowledgments. We like to thank Kevin Coulembier, Marco Mackaay, Volodymyr
Mazorchuk and Krzysztof Putyra for helpful discussions, conversations and exchange of
emails. We like to thank SAGE, which should have been a coauthor of this paper, but
modestly refused to.

M.E. was supported by the Australian Research Council Grant DP150103431 and D.T.
was partially supported by NCCR SwissMAP during this work.

2. Preliminaries

We denote by i, j etc. the vertices of Γ, and i j means that i and j are connected in Γ
by an edge. For each such graph Γ we chose an enumeration of its vertices, and we obtain its
adjacency matrix A = A(Γ).

Example 2.1. Of paramount importance for us are the finite type ADE graphs

1 2 · · · n−1 n

type An; n ∈ Z≥1

,

n−1

1 2 · · · n−2

n
type Dn; n ∈ Z≥4

A(D4) =

( 0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

)

,
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6

1 2 3 4 5

type E6

,
7

1 2 3 4 5 6

type E7

,
8

1 2 3 4 5 6 7

type E8

,

as well as their affine counterparts

1

0 · · ·
n

type Ãn; n ∈ Z≥2

A(Ã2) =
(

0 1 1
1 0 1
1 1 0

)

,

0 n−1

2 3 · · · n−2

1 n
type D̃n; n ∈ Z≥4

,

0

6

1 2 3 4 5
type Ẽ6

, 7

0 1 2 3 4 5 6
type Ẽ7

, 8

1 2 3 4 5 6 7 0
type Ẽ8

,

The enumeration of the vertices matters for some calculations, and we always number them

as indicated above. (Note that we omit the type Ã1 graph.) N

The zig-zag algebra. The double graph Γ� is the oriented graph obtained from Γ by doubling
all edges i j of Γ into a pair of parallel edges i j (oriented from i to j) and j i (oriented
from j to i), and by adding two loops αs = (αs)i and αt = (αt)i per vertex.

Let R(Γ�) denote the path algebra for Γ�, which is graded by using the path length, but
putting loops in degree 2. We identify its length zero paths with the vertices of Γ, and we let
i j k = i j ◦ j k etc. denote the composition.

Definition 2.2. Let Z� = Z�(Γ), for Γ having at least three vertices, be the quotient of
R(Γ�) by the following defining relations.

(2.2.a) Boundedness. Any path involving three distinct vertices is zero.

(2.2.b) The relations of the cohomology ring of the variety of full flags in C2.
αs ◦ αt = αt ◦ αs, αs + αt = 0 and αs ◦ αt = 0.

(2.2.c) Zig-zag. i j i = αs − αt for i j.

In case Γ has one vertex we let Z� = k[αs, αt]/(2.2.b), by convention, and in case Γ has two
vertices we additionally to (2.2.a), (2.2.b) and (2.2.c) kill paths of length three.

We call Z� the zig-zag algebra associated to Γ. N

The relations of Z� are homogeneous with respect to the path length grading, which thus
endow Z� with the structure of a graded algebra. (Throughout, graded means Z-graded.)

Remark 2.3. Our definition of Z� is slightly different from the one as e.g. in [HK01,
Section 3], but they are equivalent. (To see this use the isomorphism from k[x]/(x2) to
k[αs, αt]/(αs+αt, αsαt) given by x 7→ αs−αt.) We prefer the formulation as in Definition 2.2
since it fits to the generalizations of the zig-zag algebra from [MMMT18, Section 5C]. N

We call xi = αs − αt ∈ EndZ�(i) the volume element (at vertex i).

Example 2.4. The most classical examples of zig-zag algebras are the cases where Γ is

either a type An graph or a type Ãn graph.

Z�(An) =
1 2 · · · n−1 n

αs

αt

αs

αt

αs

αt

g

f

αs

αt

f = n−1 n , g = n n−1

living on the type An graph

, Z�(Ãn) =

1

0 · · ·

n
g
f

f = n 0 , g = 0 n

living on the type Ãn graph
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where we omitted the loops for the type Ãn graph for illustration purposes only. N

Basic properties. We omit the (easy) proofs of the following basics facts.

Lemma 2.5. If Γ has three or more vertices, then Z� is quadratic, i.e. it is generated in
degree 1, and its relations are generated in degree 2. �

Note hereby that the relation αs + αt = 0 can be omitted by reparametrization of the
endomorphisms spaces, cf. Remark 2.3.

Lemma 2.6. The association

tr(i) = 0, tr(xi) = 1, tr(i j) = 0,

gives rise to a non-degenerate trace form tr : Z� → k, which endows Z� with the structure
of a Frobenius algebra. �

Using Lemma 2.6, the following is also easy to prove.

Lemma 2.7. We have

qdim(HomZ�(i, j)) =


2q, if i = j, {i, xi} is a basis,
q, if i j, {i j} is a basis,
0, else, ∅ is a basis,

where qdim( ) denotes the graded dimension, and 2q = 1 + q2. �

Projective and simple modules. For s ∈ Z we will denote by qs degree shifts using the
convention that a map of degree d between M and N is of degree d− s1 + s2 seen as a map
from qs1M to qs2N. Further, for us the action of Z� on modules will always be given by

left: pre-composition of paths & right: post-composition of paths.

In particular,

qsPi = {i, j i, xi | i j}, qsiP = {i, i j, xi | i j},
are left, respectively right, graded projective Z�-modules with i being in degree s. Moreover,

{qsPi | i ∈ Γ, s ∈ Z}, {qsiP | i ∈ Γ, s ∈ Z},
are complete, irredundant sets of indecomposable, graded projective left, respectively right,
Z�-modules. In contrast, the simple left Z�-modules Li are one-dimensional and only one
vertex idempotent of Z� acts non-trivially on them, and elements of positive degree act as
zero. Thus, they can be identified with elements of Z� and, for example, for i j

Li = {i} ∼= q−1{i j} ∼= q−2{xi}
is the same incarnation of the simple Li corresponding to i. Similarly, of course, for the right
simples iL. Thus, we get the Loewy picture

Pi =

i

j i

xi

(for i j), iP =

i

i j

xi

(for i j)(2-1)

of the projectives, where the vertex idempotent spans the head and the volume element spans
the socle.

Having all this, the following easy, but crucial, statement is immediate, where I is the
identity matrix. (Recall hereby that the graded Cartan matrix encodes the graded filtration
of the projectives Pi or iP by simples, where we enumerate the rows and columns as given
by the enumeration of the vertices.)

Proposition 2.8. The graded Cartan matrix Cq = Cq(Z�) of Z� is 2qI + qA. �

In particular, forgetting the grading, the Cartan matrix C = C(Z�) of Z� is just 2I + A.
From now on we will focus on the case of left modules (and omit to say so); the case of

right modules can be done in the same way.
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Vertex conditions. Fix a non-empty set C of vertices of Γ.

Definition 2.9. The zig-zag algebra ZC
� = ZC

�(Γ) with vertex condition for C is the quotient
of Z� obtained by killing the volume elements xc for c ∈ C. N

Clearly, everything done above for Z� works, mutatis mutandis, for ZC
� as well. (However,

ZC
� is always quadratic.) In particular, the Loewy pictures are as in (2-1), but with the

projective PC
c for c ∈ C having no volume element, and we will use the superscript C to

indicate ZC
�-modules which are different from their Z�-counterparts. Further, the following

combinatorial difference which will play a key role, where we denote by EC the matrix with
only non-zero entry equal to 1 in the c-c position for c ∈ C.

Proposition 2.10. The graded Cartan matrix CC
q = Cq(ZC

�) of ZC
� is 2qI−q2EC +qA. �

The Cartan matrix CC = CC(ZC
�) of Z� is just the dequantization CC = 2I −EC + A.

Let Γ− c denote the graph obtained from Γ by removing a fixed vertex c. Further, let us
write Z� = Z∅� for convenience of notation.

Lemma 2.11. We have det(CC
q ) = det(CC

q (ZC−c
� ))− det(CC

q (ZC−c
� (Γ− c))). �

Note that Lemma 2.11 gives a recursive way to compute the graded Cartan determinant
det(CC

q ) of ZC
� from that of Z�. Explicitly, in case C has just one entry c, then det(CC

q ) =

det(Cq)− det(Cq(Z�(Γ− c))).

Proof. By using Proposition 2.10, this follows directly by row expansion. �

Example 2.12. Very similar to Example 2.4, the most important example is the case of a
type An graph with vertex condition imposed on one of its leafs.

ZC
�(An) =

1 2 · · · n−1 n

αs

αt

αs

αt

αs

αt

C = {1}

living on the type An graph

where we have illustrated the case C = {1}. N

3. Cellularity

A brief reminder. We briefly recall the definition of a relative cellular algebra as it appears
in [ET17, Definition 2.1], sneaking in the graded setting as in [HM10, Definition 2.1].

Definition 3.1. A relative cellular algebra is an associative, unital algebra R together with
a (relative) cell datum, i.e.

(X, M, C, ?, E, O, ε)

such that the following hold.

(3.1.a) X is a set and M = {M(λ) | λ ∈ X} a collection of finite sets such that

C( , ) :
∐
λ∈X M(λ)× M(λ)→ R

is an injective map with image forming a basis of R. For S, T ∈ M(λ) we write
C(S, T ) = CλS,T from now on.

(3.1.b) ? is an anti-involution ? : R→ R such that (CλS,T )? = CλT,S .

(3.1.c) E is a set of pairwise orthogonal, non-zero idempotents, all fixed by ?, i.e. ε? = ε for
all ε ∈ E. Further, O = {<ε| ε ∈ E} is a set of partial orders <ε on X, and ε is a map
ε :
∐
λ∈X M(λ)→ E sending S to ε(S) = εS such that
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(3-1) εRε CλS,T ∈ R(≤ελ), (3-2) εCλS,T =

{
CλS,T , if εS = ε,

0, if εS 6= ε,

for all λ ∈ X, S, T ∈ M(λ) and ε ∈ E.

(3.1.d) For λ ∈ X, S, T ∈ M(λ) and a ∈ R we have

aCλS,T ∈
∑

S′∈M(λ) ra(S
′, S) CλS′,T + R(<εT λ)εT ,

with scalars ra(S
′, S) ∈ k only depending on a, S, S′.

We call the set {CλS,T | λ ∈ X, S, T ∈ M(λ)} a relative cellular basis.

In the case E = {1} we call R a cellular algebra, and we write <=<1.
The whole setup is called graded if the very same conditions as in [HM10, Definition 2.1]

are satisfied (which can be easily adapted to the relative case). N

Note that the notion of a cellular algebra in the sense of [GL96, Definition 1.1] coincides
with our definition here as one can easily check. In particular, a cellular algebra is relative
cellular, but not conversely as will follow e.g. from Example 3.3 combined with Lemma 3.7.

The crucial examples. The following examples partially appeared in [ET17, Section 2E].

Example 3.2. Let Γ be a type A3 graph. Then Z� is cellular and its cell datum is as follows.
The anti-involution ? is the linear extension of the assignment which swaps source and target
of paths. Further, let X = {0 < 1 < 2 < 3}, with 0 playing the role of a dummy, and let

M(0) = {1 2}, M(1) = {1, 2 1}, M(2) = {2, 3 2}, M(3) = {3},
which determines the cells M(i)× M(i) by CiS,T = S ◦ T ? for (S, T ) ∈ M(i)× M(i). Clearly, this

is a graded structure. Imposing the vertex condition C = {1} gives a cellular structure for
ZC
�, but without any dummy. N

Example 3.3. Let Γ be a type Ã2 graph. Then Z� is relative cellular and its cell datum is
almost the same as in Example 3.2. The crucial differences are that there is no dummy cell,
and one has two idempotents E = {0, ε = 1 + 2} where the orderings are the same as in the
finite case for ε, and the opposite for 0. N

3A. The case of Z�.

Construction. For any Γ, let us define an anti-involution ? : Z� → Z� by

i? = i, i j? = j i, for i j,

which determines ? completely. Further, we will always use the rule

CiS,T = S ◦ T ?, for (S, T ) ∈ M(i)× M(i),

to gives the cells M(i)× M(i) which we are going to define now in the cases where Γ is a finite
or affine type A graph.

For type An let the indexing set be X = {0 < 1 < . . . < n} with the index 0 playing the
role of a dummy. The cell sets M(i) are

M(0) = {1 2}, M(i) = {i, i+1 i}, for i /∈ {0, n}, M(n) = {n}.
The path length grading gives a way to view this datum as a graded datum by assigning to
each element of M(i) the corresponding path length degree.

For type Ãn the cell datum is almost the same. The crucial differences are that the cells
are now all of size four, and one has two idempotents E = {ε = 1 + · · ·+ n−1, n} where the
orderings are the same as in the finite case for ε, and the opposite for n.

Proposition 3.4. The above defines the structure of a graded relative cellular algebra on
Z�. This structure is the structure of a graded cellular algebra in case Γ is of type An. �
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Proof. We only prove the claim in case Γ is a type Ãn graph, the rest follows then directly
from the fact that idempotent truncations of relative cellular algebras are relative cellular,
cf. [ET17, Proposition 2.8], as well as [ET17, Example 2.3]. First, (3.1.a) follows from
Lemma 2.7, while (3.1.b) is immediate. The only statement from (3.1.c) which needs to
be checked is (3-1) which follows since e.g. nZ�n = k{n, xn}. The last condition (3.1.d) is
verified via a small calculation. The statement about the grading is immediate. �

Elimination. The crucial lemma, which is a consequence of [KX98, Proposition 3.2] and
[ET17, Corollary 3.25], is:

Lemma 3.5. If Z� is cellular, then its Cartan matrix C is positive definite. If Z� is relative
cellular, then C is positive semidefinite. �

For any relative cellular algebra, recall that for each λ ∈ X there is an associated cell
module ∆λ. Define the decomposition numbers dµλ as the multiplicity of Lλ in ∆µ, where
λ ∈ X0 correspond to idempotent cells. In particular, dµλ ∈ Z≥0. In the case of Z� we
will identify X0 = {i | i vertex of Γ}, and if we want to sort these numbers into a matrix
D, then we will always enumerate columns as indicated by the enumeration of the vertices.
Further, we enumerate the rows by first using the elements from X0 (in the enumeration of
the vertices) followed by the remaining elements with a fixed, arbitrary enumeration. By
[GL96, Proposition 3.6] or [ET17, Theorem 3.23] we get:

Lemma 3.6. If Z� is relative cellular, then C = DTD where dµi = 0 unless µ <ε(i) i, and
dii = 1, where ε(i) is the unique idempotent in E with ε(i)i = i. �

The following lemma and the ideas in its proof, will reappear throughout.

Lemma 3.7. If Γ is a bipartite graph which is not an ADE graph, then Z� is not cellular.
If Γ is a bipartite graph which is not a finite or affine ADE graph, then Z� is not relative
cellular. �

Proof. Let Γ be bipartite. Then we claim the following, where we added the (graded) Cartan
determinants for later use, since they can be computed using the numerical data given in the
references below.

Claim. C is positive definite if and only if Γ is a type ADE graph. C is positive semidefinite
if and only if Γ is a finite or affine type ADE graph. Further, in these cases

An Dn E6 E7 E8

det n+ 1 4 3 2 1

qdet (n+ 1)q (1 + q2n−2)2q
(1 + q10)2q

−q61q

(1 + q12)2q
−q62q

(1 + q14)2q
−q63q

Ãn D̃n Ẽ6 Ẽ7 Ẽ8

4 or 0 0 0 0 0

q2n+2 + 1

+(−1)n2qn+1
(1 + q2n)2q

−(q4 + q2n−4)2q

(1 + q12)2q
−(q6 + q6)2q

(1 + q14)2q
−(q6 + q8)2q

(1 + q16)2q
−(q6 + q10)2q

(3-3)

are the Cartan determinants, respectively the graded Cartan determinants where we let
aq = 1 + q2 + · · ·+ q2a−2 + q2a for a ∈ Z≥0.

Proof of the claim. The eigenvalues of the adjacency matrices of finite or affine type ADE
graphs are known, cf. [Smi70] or [BH12, Section 3.1.1], and they all are in the interval ]−2, 2[
for the finite types, or in the interval [−2, 2] for the affine types. Moreover, by the same
references, the converse is also true: If Γ is a graph whose adjacency matrix has eigenvalues
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contained in [−2, 2], then Γ is a finite or affine type ADE graph. In particular, all other graphs
have a Perron–Frobenius eigenvalue strictly bigger than 2. Finally, if Γ is bipartite, then they
also have an eigenvalue strictly smaller than −2, and the claim follows by Proposition 2.8.

Then the lemma itself follows from this claim and Lemma 3.5. �

Lemma 3.8. If Γ is a type Ã graph, then Z� is not cellular. �

Proof. Assume that Z� is cellular. Then, by Proposition 2.8 and Lemma 3.6, we get

2 1 0 0 · · · 1
1 2 1 0 · · · 0

0 1 2 1
. . .

...

0 0 1 2
. . .

...
...

. . .
. . .

. . .
. . .

...
1 0 0 0 0 2


= C = DTD =

 1 d21 d31 · · ·
d12 1 d32 · · ·
...

. . .
. . .

. . .




1 d12 · · ·

d21 1
. . .

d31 d32
. . .

...
...

...

.

We observe that this implies that each column of D contains precisely two non-zero entries,
both of which are equal to 1. One of these is the number dii, the other we will write as da(i),i.
If i, j are non-adjacent vertices of Γ, then it now follows that a(i) 6= a(j) and dij = 0 = dji.
It also follows that for i j we can only have three distinct cases:

(i) : dij = 1, (ii) : dji = 1, (iii) : a(i) = a(j) ∈ X− X0.

The case (iii) does not give any solution as long as we have four or more vertices. In the
other cases the matrix D has to be of either form

(i) and (ii) : D =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 or D =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

, (iii) : D =


1 0 0
0 1 0
0 0 1
1 1 1

,
here exemplified for four vertices for (i) and (ii). However, it is impossible to permute (by
simultaneous row and column reenumeration) the two leftmost matrices into upper triangular

matrices, contradicting Lemma 3.6, and the claim follows for n ≥ 3. For type Ã2 we need an
extra argument to rule out (iii). In this case we would have four cell modules (corresponding
to the rows of D), three of which are simple and one of dimension three containing all simples
in its filtration. Using (2-1), this gives a contradiction to [GL96, Lemmas 2.9 and 2.10], since
there is no way to filter the projectives by these cell modules in any order compatible way,
because all three indecomposable projective modules have non-equivalent socles and thus,
could not agree with the socle of the three-dimensional cell module. �

Lemma 3.9. If Γ is not a bipartite graph, then Z� is not cellular. �

Proof. A non-bipartite graph has a subgraph of type Ãn=2m, and the claim follows by
using Lemma 3.8 since idempotent truncations of cellular algebras are cellular by the same
arguments as in e.g. [ET17, Proposition 2.8]. �

Lemma 3.10. If Γ is a type D4 graph, then Z� is not relative cellular. �

Proof. Assume relative cellularity. Then we get


2 1 0 0
1 2 1 1
0 1 2 0
0 1 0 2

 = C = DTD =


1 d21 d31 d41 d51 · · ·
d12 1 d32 d42 d52 · · ·
d13 d23 1 d43 d53 · · ·
d14 d24 d34 1 d54 · · ·




1 d12 d13 d14
d21 1 d23 d24
d31 d32 1 d34
d41 d42 d43 1
d51 d52 d53 d54
...

...
...

...


by the same arguments as before in the proof of Lemma 3.8. Actually, we get the very same
conditions for the entries of D, depending on the connectivity of the vertices only. But this

case is easier than the case of type Ã since there is no possible solution. �
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Lemma 3.11. If Γ is a finite or affine type DE graph, then Z� is not relative cellular. If Γ is

a non-bipartite graph which is not a type Ãn=2m graph, then Z� is not relative cellular. �

Proof. Since idempotent truncations of relative cellular algebras would be relative cellular, cf.
[ET17, Proposition 2.8], the statement follows from Lemma 3.10, and by observing that the
three cases of a trivalent vertex containing no subgraph of type D4, namely

3

1 2

4

or

3

1 2

4

or

3

1 2

4

have −1 as an eigenvalue for their adjacency matrices, contradicting Lemma 3.5. �

The proof. With the work already done we get:

Proof of Theorem A. Proposition 3.4 shows the existence of a cellular structure for finite or
affine type A graphs. Conversely, Lemmas 3.7, 3.9 and 3.11 prove that none of the remaining
cases can be (relative) cellular. �

3B. The case of ZC
�.

Construction. Let Γ be a type An graph, and let ZC
�(An) the associated zig-zag algebra

with vertex condition C = {1} or C = {n}. In this case the construction of the cell datum
works verbatim as for Z�(An) with the only difference that we do not need a dummy cell. In
particular, the following can be proven, mutatis mutandis, as Proposition 3.4.

Proposition 3.12. The above defines a graded cell datum for ZC
�(An). �

Elimination. For completeness:

Lemma 3.13. If ZC
� is relative cellular, then det(CC) ≥ 0. �

Lemma 3.14. Let Γ be of finite or affine ADE graph. If ZC
� is relative cellular, then Γ is a

type An graph and C = {1} or C = {n}. �

Proof. The claim follows from a direct application of Lemmas 3.13 and 2.11: For C = {c} a
small case-by-case check verifies that

type An D, c=1 D4, c=2 D>4, c>1 E Ã2m Ã2m+1 D̃ Ẽ
Cdet n+1−c(n−c+1) 0 <0 <0 <0 4−2m−1 <0 <0 <0

where we have used the data collected in (3-3). Since n+ 1− c(n− c+ 1) ≥ 0 holds only in
the cases C = {1} or C = {n}, with one exception C = {2} and n = 3, and 4− 2m− 1 ≥ 0
holds only if m = 1, it remains to rule out those cases.

Type A3 with C = {2}. Assuming relative cellularity, reciprocity would give

 2 1 0
1 1 1
0 1 2

 = CC = DTD =

 1 d21 d31 d41 · · ·
d21 1 d32 d42 · · ·
d31 d32 1 d43 · · ·




1 d12 d13
d21 1 d23
d31 d32 1
d41 d42 d43
...

...
...


which is impossible as one can easily check.

Type Dn with C = {1}. First assume that n ≥ 5. Then there would be a type D4 subgraph
without vertex condition and idempotent truncation gives a contradiction to Lemma 3.10.
The remaining case, D4 with vertex on any leaf, can be ruled out with the same matrix
comparison as we have used above.
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Type Ã2. We first observe that in this case all three possibilities to impose the vertex condition
give isomorphic algebras. So let C = {0}. Then reciprocity can only work with 1 1 1

1 2 1
1 1 2

 = CC = DTD =

 1 0 0
1 1 0
1 0 1

 1 1 1
0 1 0
0 0 1


as the usual reasoning shows. This would mean that we have three cell modules, with ∆0

being of dimension three, and the other two being simple. By (2-1), we also have projectives

PC
0 =

0

1 0 2 0, P1 =

1

0 1 2 1

x1

, P2 =

2

0 2 1 2

x2

with head PC
0 being L0, and the heads of P1 and P2 are L1 = ∆1 and L2 = ∆2, respec-

tively. However, any indecomposable projective has a filtration by cell modules, see [ET17,
Proposition 3.19], but only ∆0 contains L0, which gives a contradiction.

If C has more than one vertex, then, with the same idempotent truncation arguments as
above, we only need to rule out the case of Γ being a type A2 graph with C = {1, 2} or a
type D4 graph for any C, or a type A3 graph with C = {2}. Most of these have already been
ruled out above. By symmetry, for D4 we just calculate

type D4,C = {1, 2} D4,C = {1, 3} D4,C = {1, 2, 3} D4,C = {1, 2, 3, 4}
C-det −4 −1 −3 −2

which rules out this case by Lemma 3.13. Finally, the case of a type A2 graph with C = {1, 2}
one again gets no matrix solution for reciprocity. �

Lemma 3.15. If Γ is not a finite or affine ADE graph, then ZC
� is not relative cellular. �

Proof. Assume that ZC
� is relative cellular. By the usual subgraph-truncation argument and

by Lemma 3.10 as well as Lemma 3.14, we see that Γ can not contain a type D4 subgraph (with
or without any c ∈ C being on this subgraph). Using the same arguments and Lemma 3.14,

we see that Γ can not contain a type Ã subgraph with c ∈ C on it. Since Γ is not a type Ã
graph itself, it remains to rule out one case, i.e.

3

1 2

4

for C = {1}.

(All other configurations of a trivalent vertex containing no D4 subgraph contain a subgraph

of type Ã2 with at least one vertex condition.) The same reciprocity reasoning as before give
only one potential solution, namely

1 1 0 0
1 2 1 1
0 1 2 1
0 1 1 2

 = CC = DTD =


1 0 0 0
1 1 0 0
0 1 1 0
0 1 0 1




1 1 0 0
0 1 1 1
0 0 1 0
0 0 0 1


from where we can read of the cell modules. Again, this gives a contradiction to the filtration
of the indecomposable projectives by cell modules. �

The proof. Nothing remains to be done:

Proof of Theorem A ′. Combine Proposition 3.12 with Lemmas 3.14 and 3.15 �
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4. Quasi-hereditary

A brief reminder. We start by recalling the definition of a quasi-hereditary algebra as it
appears e.g. in [CPS88, Below Example 3.3]. To this end, a (two-sided) ideal J in an algebra
R, which is projective as a left R-module, is called hereditary if JJ = J and JRad(R)J = 0
hold, where Rad(R) is the Jacobson radical of R.

Definition 4.1. A finite-dimensional algebra R is called quasi-hereditary if there exists a
chain of ideals

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jk−1 ⊂ Jk = R,

for some k ∈ Z≥1, such that the quotients Jl/Jl−1 are hereditary ideals in R/Jl−1. N

A chain as in Definition 4.1 is called a hereditary chain.

The crucial example.

Example 4.2. Let Γ be a type A3 graph, and let C = {1}. Let J1 = ZC
�(1)ZC

�, J2 =

ZC
�(1 + 2)ZC

� and J3 = ZC
�(1 + 2 + 3)ZC

�, i.e.

J1 = k{1, 2 1, 1 2, x2}, J2 = k{2, 3 2, 2 3, x3} ⊕ J1, J3 = k{3} ⊕ J1 ⊕ J2,

where we recall that x2 = 2 1 2 and x3 = 3 2 3, while x1 = 0 because C = {1}. It follows
that these form a hereditary chain. N

4A. The case of Z�.

Proof of Theorem B. The discussion about simple Z�-modules in Section 2 shows that the
Jacobson radical Rad(Z�) is equal to the span of all paths of positive length. In particular,
all volume elements xi are in Rad(Z�). Hence, Z� can never be quasi-hereditary since J1
could not contain any idempotent, because any such idempotent would be a sum of vertex
idempotents. Thus, we would have J1Rad(Z�)J1 6= 0. �

4B. The case of ZC
�. Before we start, note that the Jacobson radical Rad(ZC

�) of ZC
� is, as

in the case of Z�, the span of all paths of positive length.

Construction. Let Γ be a type An graph, and let ZC
� the associated zig-zag algebra with

vertex condition C = {1}. Let J0 = 0, and for each i ∈ {1, . . . , n} we define

Ji = ZC
�(1 + · · ·+ i)ZC

�.(4-1)

Similarly, but reversing the summation order, in case C = {n}.
The following is just a summary of Example 4.2.

Proposition 4.3. Assignment (4-1) gives rise to a hereditary chain for ZC
�(An) with vertex

condition C = {1}. Similarly in case of C = {n}. �

Proof. By construction, the Ji are ideals in Z� and form a chain as in Definition 4.1. Moreover,
Ji/Ji−1 contains precisely one idempotent (which we identified with i), paths of length one
either starting or ending at i and the volume element xi+1. That is, we have

J1 = k{1, 2 1, 1 2, x2 = 2 1 2}, Jn/Jn−1 = k{n},
Ji/Ji−1 = k{i, i+1 i, i i+1, xi+1 = i+1 i i+1}, i ∈ {2, . . . , n− 1},

which shows that Ji/Ji−1 is an idempotent ideal. To check the other two conditions we
observe that ZC

�(An)/Ji ∼= ZC
�(An−i) with vertex condition imposed on its first leaf. This

means we only need to check these two conditions for J1 where we get

J1 ∼= P1 ⊕ P1, J1Rad(ZC
�)J1 = 0,

cf. (2-1). By symmetry, the same works with the vertex condition C = {n}. �
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Elimination. We recall a consequence of a classical result, cf. [BF89, Proposition 1.3].

Lemma 4.4. If 0 = J0 ⊂ J1 ⊂ · · · ⊂ Jk−1 ⊂ Jk = ZC
�, is a hereditary chain of ZC

�, then

det(CC(ZC
�/Jl−1)) = 1 for all l ∈ {1, . . . , k}. �

Lemma 4.5. Let Γ be of finite or affine ADE graph, and assume that C = {c}. If ZC
� is

quasi-hereditary, then Γ is a type An graph and C = {1} or C = {n}. �

Proof. By Lemmas 4.4 and very similar to the proof of Lemma 3.14 (by calculating deter-

minants), it remains to check the case that Γ is a type Ã2 graph with one vertex condition.
To this end, we first observe that in this case all three possibilities to impose the vertex
condition give isomorphic algebras. So let C = {0}. Then, by e.g. [BF89, Corollary 1.2], one
would need to set

J1 = k{0, 1 0, 0 1, x1, 2 0, 0 1, x2}.
But we have det(CC(ZC

�/J1)) = 0, contradicting Lemmas 4.4. �

Lemma 4.6. If Γ is not a type An graph with C = {1} or C = {n}, then ZC
� is not

quasi-hereditary. �

Proof. Assume that ZC
� is quasi-hereditary. Again, by [BF89, Corollary 1.2], the ideal J1 has

to contain a primitive idempotent for some c ∈ C, and we get

J1 = k{c, j c, c j, xj, d c, c d | c j, j /∈ C, c d, d ∈ C}
∼= PC

c ⊕
⊕

c j,j/∈C k{c j, xj} ⊕
⊕

c d,d∈C k{c d},

where the decomposition follows from the structure of ZC
�. If C does not contain a leaf, then

each indecomposable projective of ZC
� is of dimension at least three, cf. (2-1), and J1 can

not be a projective ZC
�-module. Thus, assume that c ∈ C is a leaf that gives J1. By the same

argument as above, c could not have a neighbor c ∈ C since each indecomposable projective
of ZC

� in this case is of dimension at least two. In the remaining case, i.e. c ∈ C is a leaf

and its neighbor c j is not in C, we can consider ZC
�/J1 which would be quasi-hereditary, cf.

[CPS88, Below Example 3.3]. But this would recursively give a contradiction, since we have

ZC
�/J1

∼= ZC−c
� (Γ− c) where the vertex condition for ZC−c

� (Γ− c) is at j: If |C| ≥ 2, then, at
one point, one has two neighboring vertex conditions, contradicting the above observation.
If C = {c}, then one will have a finite or affine type ADE graph with one vertex condition.
However, by Lemma 4.5, the only case where this would not give a contradiction is the case
with Γ being a type An graph with C = {1} or C = {n}. �

The proof. We collect the harvest:

Proof of Theorem B ′. Combine Proposition 4.3, which constructs the hereditary chain, with
Lemma 4.5, which rules out all other cases. �

5. Koszulity

A brief reminder. We start with one of the many equivalent definitions of a Koszul algebra,
cf. [BGS96, Definition 1.1.2] or [PP05, Section 2.2]. Recall here that a linear projective
resolution of a graded module M of a positively graded algebra R is an exact sequence

· · · q2Q2 qQ1 Q0 M,(5-1)

with graded projective R-modules qtQt (for us this is the tth part of the resolution) generated
in degree t, and R-equivariant maps of degree 0. Using our grading conventions from Section 2,
this is the same data as giving an exact sequence of homogeneous, R-equivariant maps of
degree 1 between the graded projectives Qt.

Definition 5.1. A finite-dimensional, positively graded algebra R is called Koszul if its degree
0 part is semisimple and each simple R-module admits a linear projective resolution. N
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For us only the property of having a linear projective resolution will play a role; the other
properties are evidently satisfied. Moreover, up to shifts, we can focus on simples which are
concentrated in degree 0.

The crucial examples.

Example 5.2. Let Γ be a type Ã2 graph. In this case it is easy to write down a linear
projective resolution of L0 (of course, the others are similar):

P0

P2

P1 P1

P0 P0 L0

P2 P2

P1

P0

·0→2

·2→1

·-1→0

·1→2

·1→0

·-0→2

·0→1

·2→1

·2→0
·2→0

·1→2

·0→1

,

where the rightmost map is the projection, while the other maps are given by post-composition
(which commutes with the left action given by pre-composition) with the corresponding
paths, where the dashed arrows hit linear combinations in the kernels. For example, because
0 1 0 = x0 = 0 2 0, the element 0 1− 0 2 is in the 1st kernel and we use two maps from
P0 to compensate for it. Since these are of degree 1, we get a linear projective resolution by
continuation of the sketched pattern. N

Example 5.3. Let Γ be a type D4 graph. We try to resolve L1 and L2 linearly by projectives:

P3

P1 P2 P2 P1 L1

P4

·3→2
·1→2

·-2→4

·2→3
·2→1

·4→2

and

P4 P1

P2

P2 P3 P3 P2 L2

P2

P1 P4

·4→2 ·1→2

·-2→3

·2→1
·-2→4

·-2→1

·2→3

·3→2

·3→2
·3→2

·-2→4

·2→3

·1→2 ·4→2

,

where we use the same conventions as in Example 5.2. The 4th parts have kernels supported
in degree 2, and we are stuck. (Note that this happens after the same number of steps.) As
we will see, the same holds for all type ADE graphs.

In contrast, if we add the vertex condition C = {1} to the type A graph, then the linear
projective resolutions exist and are all finite. This happens since PC

1 will not contain a volume
element, e.g.

PC
1

PC
1 P2 P2 PC

1 L1

P3

·1→2
·1→2

·2→1

·-2→3

·2→1

·3→2

and

PC
1

PC
1 P2 P2 L2

P3

·1→2
·1→2

·2→1

·-2→3 ·3→2

and PC
1 P2 P3 L3
·1→2 ·2→3 ,

where we calculate the resolutions for all simple ZC
�(A3)-modules. (In this case all resolutions

are finite, but of different length. We will see below that this is in fact always the case for
the type A graphs with vertex condition imposed on one leaf.) N
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5A. The case of Z�.

Construction. We first show abstractly that Z� is Koszul in case Γ is not a type ADE
graph. Then we construct the linear projective resolution explicitly using a non-terminating
algorithm motivated by Chebyshev polynomials.

Before showing koszulity we make the following observation, which is inspired by [Ben08,
Section 2]. Let us write Q( ) for the projective cover of a module. If K0 is a Z�-module which
has a radical filtration of length 2 with multiplicity vectors a0 of K0/rad(K0), respectively
b0 of rad(K0)/rad2(K0), then we have a short exact sequence K1 ↪→ Q(K0) � K0, where
a1 = Aa0 − b0, respectively b1 = a0, are the corresponding multiplicity vectors of the radical
filtration of K1. Further, if K0 is graded, then so is K1.

Assume that a1 6= 0. If K0 is generated in degree 0 and its radical filtration is equal to its
grading filtration, then K1 is generated in degree 1, and its radical filtration is also equal to
its grading filtration. This holds since rad(K1) lies inside rad2(Q(K0)), hence is of degree
2, and a1 agrees with the multiplicities of the kernel of Q(K0)� K0 in degree 1. Thus, the
filtrations agree and K1 is generated in degree 1. Hence, as long as at 6= 0, one can produce
Z�-modules Kt for all t ∈ Z≥0 in the same manner having the same properties.

Now come some of our main players in this section, the Chebyshev polynomials (of the
second kind). They are defined via the recursion

U−1(X) = 0, U0(X) = 1, Ut(X) = XUt−1(X)− Ut−2(X), for t ∈ Z≥1.(5-2)

Having the polynomials defined, observe that, for t ∈ Z≥0, the tth multiplicity vectors of the
radical filtration of Kt are given by(

at
bt

)
=

(
Ut(A) −Ut−1(A)
Ut−1(A) −Ut−2(A)

)(
a
b

)
,(5-3)

where we let U−2(X) = 0 in case t = 0.

Proposition 5.4. If Γ is not a type ADE graph, then Z� is Koszul. �

Recall that a resolution as in (5-1) is called minimal if no indecomposable summand of Qt

lies in the kernel for all t ∈ Z≥0.

Proof. We first note that the only graphs Γ such that Ut(A) = 0 holds for some t ∈ Z≥0
are type ADE graphs. This follows since the roots of the Chebyshev polynomial Ut(X) are
known to be all of the form 2 cos(k/(t+ 1)π) ∈]− 2, 2[ for k ∈ {1, . . . , t}, while, by [Smi70]
or [BH12, Section 3.1.1], Γ has a Perron–Frobenius eigenvalue λ ≥ 2. This also implies that
Ut(A) is irreducible (meaning that, for all i, j, there exists Nij ∈ Z≥0 such that the i-j

position of Ut(A)Nij is in Z>0). Further, that Ut(A) has non-negative entries follows from
categorification, cf. [MT16, End of Section 5.1] (which uses the polynomial 2I + A). Hence,
Ut(A) is a symmetric, irreducible, non-negative matrix, and we can apply Perron–Frobenius
theory to find an eigenvector of Ut(A) with entries and associated eigenvalue from R>0. But
having such an eigenvector implies that no columns or rows can be zero. Thus, if we start
with K0 = Li, then at in (5-3) will never be the zero vector. Summarized, to produce a
minimal projective resolution of K0 = Li we successively resolve the module Kt with its
projective cover Q(Kt) with kernel Kt+1. By the arguments above, this minimal projective
resolution will be linear, and the decomposition of Q(Kt) into indecomposables is given by
the ith column of Ut(A). �

We now construct the linear projective resolutions explicitly.

Definition 5.5. Fix a graph Γ. A resolution graph Θ = (V,E) associated to Γ is a directed
graph, whose vertex set V =

⋃
t∈Z≥0

Vt is a disjoint union of finite sets Vt such that each

vertex v(i) is labeled by a vertex i of Γ. Moreover, the edge set E =
⋃
t∈Z≥1

Et is a disjoint

union of finite sets Et such that Et contains only edges e(z) : v(i) → v(j) from Vt to Vt+1

that are labeled by some z ∈ k. The two sets Vt, Et are called the tth level of Θ.
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A level s resolution graph Θs is the same data, but Vt = ∅ = Et for all t ∈ Z≥s.
Further, if we fix i, then we also consider monochrome sets Vt−1(i) = {v(i) ∈ Vt−1},

Et(i) = {e(z) : v(i) → v(j) | v(i) ∈ Vt−1} and Vt(i) = {v(j) | v(j) is a target of e(z) ∈
Et(i)}, and the graph Θt(i) = (Vt−1(i) ∪ V i

t , Et(i)). Denote by Θt(i) =
⋃
r Θt(i, r) its

decomposition into connected components Θt(i, r) = (Vt−1(i, r) ∪ Vt(i, r), Et(i, r)) (seen as
an unoriented graph). N

A successors of a vertex v(i) in a directed graph is a vertex v(j) such that there is a
directed path from v(i) to v(j). Similarly in case of successors of a set of vertices.

Definition 5.6. A k-weighting of a resolution graph and a fixed set of vertices V ′ of it are
elements bv(j) ∈ k for all successors v(j) of V ′ such that for each vertex v(i) ∈ X we have∑

v(j) zv(j)bv(j) = 0,

where zv(j) ∈ k is the label of e(z) : v(i)→ v(j), and the sum is over all successors v(j) of
v(i). We denote the vector space of all k-weightings of V ′ by We(V ′). N

input : a graph Γ and a fixed vertex i of it;

output : a resolution graph Θ = Θ(i) = (
⋃
s Vs,

⋃
sEs) for Γ;

initialization (s = 0), let Θ0 = (V0, E0) be the level 0 resolution graph with
V0 = {i}, E0 = ∅, and set Vt = ∅ = Et for all t ∈ Z≥−1, t 6= 0;

for s ∈ Z≥1 do
/* recall that the vertices of Γ are numbered, say {1, . . . , n} */;

for j = 1 to n do
for Θi

s(r) connected component do
/* the potential solutions */;

fix a basis B(s, i, r) of We(Vs−1(i, r));

/* add them to Θs; called fork moves */;
for all b = (b1, . . . , bl) ∈ B(s, i, r) add a vertex v(i) to Vs+1 and edges
e(bk) : v(jk)→ v(i) to Es;

end

end

/* singleton moves */;

for v(j) ∈ Vs−1 do
add a vertex v(k) to Vs for all neighbors of j in Γ which are not neighbors of
v(k) in Θ, and an edge e(1) : v(k)→ v(j) to Es;

end

end
Algorithm 1: The Chebyshev algorithm a.k.a. producing linear projective resolutions.

Algorithm 1 is, by birth, well-defined and depends on some choices, since in each step
there are a few systems of linear equations (with unknowns bv(j)) one needs to solve and
choose a basis for its solution space. However, we will see in Lemma 5.9 that the vertex sets
are independent of the involved choices. Note further that Algorithm 1 usually does not
terminate, and output is to be understood that we can stop the algorithm at any level and
get arbitrary long parts of the resolutions.

Example 5.7. In this example, for readability, we omit the orientation of the edges (we
always read left to right and underline the starting vertex). We also write i short for v(i) in
illustrations, and if we do not specify the edge labels, then they are 1, by convention, while
we write − instead of −1 for short.
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The first example is a type Ã2 graph where we choose the vertex 0. Then one gets

0

2

1 1

0 0

2 2

1

0

-

-
,

where the dashed lines come from fork moves, while the straight lines come from singleton
moves, cf. Example 5.2. Note that all k-weighting spaces are one-dimensional in this case,
and the above is up to scaling unique.

Let us now do an example with two very different choices along the way. So let Γ be a
type D5 graph with starting vertex 2, and we get

5 2

3 3 1

2 4 4 2

1 3 3

2 5

-

-

-

-

or

5 2

3 3 1

2 4 4 2

1 3 3

2 5

-

-

-

-

2

-

2

- 2

3

-2
3

.

Note the following two crucial observation: First, although we made quite different choices
above, the multiplicities in each column are equal, and given by the Chebyshev recursion
(5-3). Second, Algorithm 1 terminates for the finite type ADE graphs, but not for the affine
ones. We will see that both is always the case. N

If we have a minimal linear projective resolution as in (5-1) which stops at Qs for some
s ∈ Z≥0, then we say its of length s.

Definition 5.8. Let s ∈ Z≥0, and let Θs = (
⋃
t Vt,

⋃
tEt) be the output of Algorithm 1 of

which we assume that it has not terminated. Then we define a complex of Z�-modules:

(5.8.a) For 0 ≤ t ≤ s we let Qt =
⊕

v(i)∈Vt Pi, i.e. we identify the vertices v(i) in the tth

level with the projectives Z�-modules Pi, and take direct sums.

(5.8.b) For 0 ≤ t ≤ s−1 we let φ : Qt−1 → Qt =
⊕

e(z) : v(i)→v(j)∈Et
(·zi j), i.e. we identify

the edges e(z) : v(i)→ v(j) in the tth level with the Z�-equivariant maps given by
post-composition with zi j, and take matrices.

We write Reso(Θs) for this complex. N

Lemma 5.9. Assume Algorithm 1 does not terminate before the sth level, and Reso(Θs)
is a minimal linear projective resolution of length s with multiplicities given by (5-3). If
Us(A) 6= 0, then Reso(Θs+1) is minimal linear projective resolution of length s+ 1. �

Proof. Because Us(A) 6= 0 we know by the same arguments as above that the kernel Ks

in generated in degree 1. Thus, its degree 1 part K1
s is a semisimple Z�-module. Because

K1
s is semisimple, the next step of the resolution is determined by choosing a basis for this

Z�-module, which is precisely what Algorithm 1 does. �

Lemma 5.10. Algorithm 1 terminates if and only if Γ is a type ADE graph. �
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Proof. A direct consequence of Lemma 5.9 since (as we have already seen above) Ut(A)
contains a zero column for some t ∈ Z≥0 if and only if Ut(A) = 0 for some t ∈ Z≥0 if and
only if Γ is a type ADE graph (with t+ 1 being the Coxeter number of Γ). �

Proposition 5.11. If Algorithm 1 does not terminate, then it produces a minimal linear
projective resolution of the Z�-module Li with multiplicities given by (5-3). �

Proof. This is a direct consequence of Lemmas 5.9 and 5.10. �

Elimination. Here is the numerical conditions which we are going to use.

Lemma 5.12. If Z� is Koszul, then its graded Cartan matrix Cq is invertible in the ring

of matrices with entries from Z[[q]]. Moreover, the column sums of C−1q are power series in
Z[[q]] of the from ∑∞

s=0 (−1)sasq
s

with coefficients as ∈ Z≥1. �

Proof. The statement about the invertibility of the graded Cartan matrix is the usual
consequence of koszulity, cf. [BGS96, Theorem 2.11.1]. For the second statement note that
the inverse of the graded Cartan matrix encodes the graded multiplicities of the resolution of
the simples by projectives. �

For a formal power series f =
∑∞

i=0 biq
i ∈ Z[[q]] we say that f has gaps of size k ∈ Z≥0 if

there exist i ≤ j ∈ Z≥0 such that j − i+ 1 = k and bi = bi+1 = · · · = bj−1 = bj = 0.
Recall that n denotes the number of vertices of Γ.

Lemma 5.13. If Z� is Koszul, then (det(Cq))−1 does not have gaps of size > 2n− 2. �

Proof. Recall that the matrix of cofactors A∗ of a fixed matrix A is determined by AA∗ =
det(A)I. By construction, the matrix C∗q has its entries in Z[q]. In fact, the entries of
C∗q are polynomials in Z[q] of degree at most 2n − 2 (this follows from Proposition 2.8),
and the statement from Lemma 5.12 boils down to the graded Cartan determinant being
invertible with the claimed property. To be precise, if the jth column sum of C∗q is of

the form
∑2n−2

s=0 bsq
s, and the inverse of the graded Cartan determinant is

∑∞
s=0 b

′
sq
s, then

(
∑2n−2

s=0 bsq
s)(
∑∞

s=0 b
′
sq
s) =

∑∞
s=0 (−1)sasq

s implies (−1)kak = b0b
′
k + · · · + b2n−2b

′
k−2n+2.

Thus, aj = 0 for some j ∈ Z≥0 if there would be a gap of size > 2n− 2. �

Proposition 5.14. If Γ is a type ADE graph, then Z� is not Koszul. �

Proof. We want to use Lemma 5.13 to show that Z� is not Koszul. To this end, observe that
we already know from (3-3) the corresponding graded Cartan determinants. Their formal
inverses are not hard to compute:

An : (1− q2)
∑∞

s=0 q
(2n+2)s, gap = 2n− 1,

Dn, n even: (1− q2 ± · · ·+ q2n−4)
∑∞

s=0 (−1)s(s+ 1)q(2n−2)s, gap = 1,

Dn, n odd: (1− q2 ± · · · − q2n−4)
∑∞

s=0q
(4n−4)s, gap = 2n− 1,

E6 : (1− q2 + q4 − q8 + q10 − q12)
∑∞

s=0 q
24s, gap = 11,

E7 : (1− q2 + q4)
∑∞

s=0 (−1)sq18s, gap = 13,

E8 : (1− q2 + q4 + q10 − q12 + q14)
∑∞

s=0 (−1)sq30s, gap = 15.

Hence, except for the type Dn graph with n = 2m, the gap equals 2n− 1. To rule out the
remaining cases, first recall the various graded Cartan determinants, cf. in the proof of
Lemma 3.7, and we make the following claim.

Claim. The graded determinant of every n− 1 minor of Cq(Z�(D2m)) is divisible by 2q.

Before we prove this claim, let us state the consequences. This means that we can simplify

CqC
∗
q = (1 + q2n−2)2qI  Cqc

∗
q = (1 + q2n−2)I,
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where c∗q = (2q)−1C∗q is a matrix with entries in Z[q] of degree at most 2n− 4. But now the

argument using gaps applies again since (1 + q2n−2)−1 =
∑∞

s=0(−1)sq(2n−2)s (the gap is of
size 2n− 3, which is strictly greater than 2n− 4). Hence, this case is ruled out as well, and
it remains to prove the claim.

Proof of the claim. We prove the statement by induction on the number of vertices. For
the type D4 graph the matrix of cofactors is easy to compute, i.e. we have

Cq(Z�(D4))
∗ = 2q


1 + q4 −q2q q2 q2

−q2q (2q)2 −q2q −q2q
q2 −q2q 1 + q4 q2

q2 −q2q q2 1 + q4


So assume that n = 2m > 4, and take a i-j minor of Cq(Z�(Dn)), obtained by erasing

the ith row and the jth column. By symmetry, it suffices to consider the case i ≤ j. As
long as i ≤ n − 2 it turns out the determinant of this minor is equal to the determinant
of Cq(Z�(Ai−1)) times the determinant of a n − i minor of Cq(Z�(Dn−i+1)). But either
det(Cq(Z�(Ai−1))) = iq is divisible by 2q, in case i is even, or we know by induction that
det(Cq(Z�(Dn−i+1))), is in case i is odd. Thus, three cases remain, i.e. i = j = n − 1,
i = j = n and i = n− 1 and j = n. The first two cases are easy since the determinant of the
minor is equal to det(Cq(Z�(An−1))) = nq. For the remaining case one first expands the
minor along the last column, followed by an expansion in the last row to determine that this
minor is equal to ±det(Cq(Z�(An−3))) = (n−2)q. �

The proof. We collect the all the statements from above.

Proof of Theorem C. Proposition 5.14 shows that Z� is not Koszul for Γ being a type ADE
graph, while Proposition 5.11 constructs the linear projective resolution in all other cases,
where we use the fact that having a linear projective resolution of length s for all s ∈ Z≥0
implies koszulity. �

5B. The case of ZC
�.

Construction – Part I. We first observe again how the successive kernels in a resolution of a
ZC
�-module with a two step radical filtration changes.
For this purpose, we use the same notation and argumentation as above. In particular, we

get a short exact sequence KC
1 ↪→ Q(KC

0 )� KC
0 . The crucial difference is that the multiplicity

vectors of the radical filtration of KC
1 are now a1 = Aa0 − b0 and b1 = (I −EC)a0, where

EC as before denotes the diagonal matrix with only non-zero entries equal to 1 in the c-c
position. Hence, as before, we can produce ZC

�-modules KC
t for all t ∈ Z≥0 as long as at 6= 0

which are generated in degree t and have radical and grading filtrations that agree.
Note that, we do not have a pure polynomial recursion, due to the occurrence of the

matrix EC, and we have to modify our arguments. To this end, we introduce a recursion of
Chebyshev polynomials with matrix coefficients, namely

UC
−1(X) = 0, UC

0 (X) = I, UC
t (X) = XUC

t−1(X)− (I −EC)UC
t−2(X), for t ∈ Z≥1.(5-4)

Remark 5.15. One could state UC
t (X) in terms of a polynomial in two non-commuting

variables X,Y . But we only need the version with Y = (I −EC), so we stick with it. N

Having these, observe that for t ∈ Z≥0, the tth multiplicity vectors of the radical filtration
of KC

t are then given by(
at
bt

)
=

(
UC
t (A) −UC

t−1(A)
(I −EC)UC

t−1(A) −(I −EC)UC
t−2(A)

)(
a0
b0

)
.(5-5)

We now express the UC
t (X) in term of the usual Chebyshev polynomials Ut(X) viewed as

polynomials with matrix coefficients. To state it, we need the set of length k compositions
C(t, k) = {(i1, . . . , ik) | ij ∈ Z≥0, i1 + · · ·+ ik = t+ 2− 2k} for k, t ∈ Z≥0.



ALGEBRAIC PROPERTIES OF ZIG-ZAG ALGEBRAS 19

Lemma 5.16. For t ∈ Z≥0 it holds

UC
t (X) =

∑r(t)
k=1

∑
i∈C(t,k) Ui1(X)ECUi2(X)EC . . .ECUik(X),(5-6)

where r(t) = bt/2c+ 1. �

Note that, in case EC would be the zero matrix, (5-6) gives UC
t (X) = Ut(X).

Proof. We prove the statement by induction. For t = 0 and t = 1 the equality holds. (In this
case UC

t (X) = Ut(X).) To show equality for t ≥ 2, denote by Wt(X) the right-hand side of
(5-6) for fixed t and we verify it satisfies the same recursion as UC

t (X), i.e.

Wt(X) = XWt−1(X)− (I −EC)Wt−2(X).

Next, let Ui1(X)ECUi2(X)EC . . .ECUik(X) be a summand of Wt(X) with i ∈ C(t, k) for
some 1 ≤ k ≤ r(t). We distinguish three cases.

Case i1 ≥ 2. For this we have that Ui1−1(X)ECUi2(X)EC . . .ECUik(X) is a summand of
Wt−1(X) for the sequence of indices in C(t−1, k) and Ui1−2(X)ECUi2(X)EC . . .ECUik(X)
is a summand of Wt−2(X) for the sequence of indices in C(t−2, k). Hence, we have

Ui1(X)EC . . .ECUik(X) = X · (Ui1−1(X)EC . . .ECUik(X))− Ui1−2(X)EC . . .ECUik(X)

by the Chebyshev recursion for the first factor.

Case i1 = 1. In this case we only have that U0(X)ECUi2(X)EC . . .ECUik(X) is a summand
of Wt−1(X) for the sequence of indices in C(t−1, k). We obtain

Ui1(X)EC . . .ECUik(X) = X · (Ui1−1(X)EC . . .ECUik(X)) ,

by using that U1(X) = XU0(X).

Case i1 = 0. Note that, if we omit the first factor in this case, then Ui2(X)EC . . .ECUik(X)
is a summand of Wt−2(X) for the sequence of indices in C(t−2, k−1). Thus,

Ui1(X)EC . . .ECUik(X) = EC · (Ui2(X)EC . . .ECUik(X)) ,

since U0(X) = I.

The sum of the Wt(X) terms appearing in the first two cases equals the part XWt−1(X)−
Wt−2(X) in the recursion, while the sum of the terms in the third case equals the part
ECWt−2(X). Thus, we obtain that Wt(X) satisfies (5-5) and is equal to UC

t . �

Outside of the case of type ADE graphs, koszulity of ZC
� is obtained very similar to the

koszulity of Z� with Proposition 5.4, i.e.:

Proposition 5.17. If Γ is not a type ADE graph, then ZC
� is Koszul. �

Note that, morally speaking, (5-5) and Proposition 5.17 imply that the number of projective
indecomposables in the minimal linear projective resolutions grows faster if one increases the
number of vertices having a vertex conditions, and also the closer one gets to such vertices,
cf. Example 5.3.

Proof. As argued in the proof of Proposition 5.4, since Γ is not a type ADE graph, we know
that Ut(A) will always be a non-negative integral matrix without zero columns or rows. Thus,
by Lemma 5.16, the same is true for UC

t (A), because all summands in (5-6) evaluated at A
have non-negative entries with the leading term Ut(A) also having non-zero columns and
rows. Hence, if we start with KC

0 = Li, then we know that at = UC
t (A)a0 will never be zero,

and we are done by the same reasoning as in the proof of Proposition 5.4. �
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Construction – Part II. This time there are no cases that need to be eliminated (as already
indicated in Example 5.3), since all Γ and all C will give Koszul algebras. Before we can show
this, we recall that the Chebyshev polynomials have a closed form, namely

Ut(X) =
∑s(t)

k=0 (−1)k
(
t−k
k

)
Xt−2k, for t ∈ Z≥0,(5-7)

where s(t) = bt/2c. To get a matrix version of (5-7) we let X and Y denote two non-
commuting variables of degrees 1 and 2, respectively. Let M(t, k) be the set of monomials
in X and Y of degree t with k different Y -factors. (For example, M(t, 0) = {Xt} and
M(t, 1) = {Xt−2Y ,Xt−3Y X, . . . ,Y Xt−2}.)

Lemma 5.18. We have

UC
t (X) =

∑s(t)
k=0 (−1)k

∑
m∈M(t,k)m(X, I −EC), for t ∈ Z≥0,(5-8)

where X is to be assumed to be a matrix. �

Indeed, (5-8) specializes to (5-7) in case EC is the zero matrix.

Proof. One immediately checks that UC
0 (X) and UC

1 (X) satisfy (5-8). Analyzing formula
(5-8), one sees that the monomials in UC

t (X) can be obtained by multiplying the ones from
UC
t−1(X) with X from the left and subtracting the ones from UC

t−2(X) multiplied with
(I −EC) from the left, which is exactly the recursion (5-4). Thus, the claim follows. �

To obtain positivity of UC
t (A) we need a combinatorial interpretation of the summands in

(5-8) in terms of certain paths, where we recall that e.g. i j i denotes a path in the double
of Γ, which we from now on identify with paths in Γ, by convention.

Definition 5.19. For each vertex i /∈ C choose an edge of Γ that is incident with i. If every
edge of Γ is chosen by at most one vertex, then we call this a singleton inflow (outside of C).

For a fixed choice of singleton inflow, we call a path i j i a chosen zig-zag at i /∈ C if the
arrow j i was the choice for the singleton inflow at the vertex i. N

Example 5.20. A singleton inflow is not unique and might not exist at all: a type ADE
graph possesses at least one singleton inflow as long as C 6= ∅, but if we would allow C = ∅,
then the type A graph has none at all, while a type Ã graph has exactly two. N

Lemma 5.21. Assume that Γ has a singleton inflow and let p be a path in Γ. Then two
distinct chosen zig-zags in p cannot have any edges of the path in common. �

Proof. We can immediately reduce this statement to a path of length 3, i.e. p = i j k l

and assume that i j k and j k l are chosen zig-zags. This forces i = k and j = l, thus
p = i j i j with the second and third edge both being chosen for the singleton inflow. This
is a contradiction, since they are both the edge connecting i and j. �

For a fixed choice of a singleton inflow, we associate to a path p = i1 i2 . . . it−1 it
a monomial m(p) in non-commuting variables X and Y by first substituting any chosen
zig-zags in p by Y , and afterwards all remaining edges by X.

Example 5.22. Take the type A4 graph with C = {1}. Then there is a unique singleton
inflow, which we illustrate by orient an edge towards a vertex in case it is the chosen one for
that vertex, i.e.

1 2 3 4 , for C = {1}.
With this singleton inflow, for example, the path 3 2 1 2 in Γ is associated to XY , with Y
corresponding to 2 1 2. Similarly, in case C = {1, 2}, then a singleton inflow would be

1 2 3 4 , for C = {1, 2},

and 3 2 1 2 would be associated to X3. N

The next lemma yields a combinatorial interpretation of m(A, I −EC) for m ∈M(t, k).
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Lemma 5.23. Let m ∈ M(t, k) for t ∈ Z≥0 and 0 ≤ k ≤ s(t). Then the i-j position of
m(A, I −EC) is equal to the number of paths p = j i1 . . . it−1 i (of length t) from j to i
such that m(p) = m. �

Proof. Let m = Xa1Y b1Xa2Y b2 . . .XasY bs such that the sum of all ai is t − 2k and the
sum of all bi is k. By definition, the i-j position of m(A, I −EC) is equal to the number of
paths of length t− 2k where the path made of the first a1 + · · ·+ ai edges ends in a vertex
outside of C, for all i. Such a path can be uniquely extended to length t, by adding b1
chosen zig-zags after the first a1 edges, then b2 chosen zig-zags after the next a2 edges, etc.
The resulting path p satisfies m(p) = m, by construction, and clearly any such path can be
obtained uniquely in such a way, if m is fixed. �

Note that a path from j to i can contribute to multiple m(A, I −EC) for m ∈ M(t, k)
via Lemma 5.23, and of course all path contribute to m(A) = At.

Proposition 5.24. If Γ is a type ADE graph, then ZC
� is Koszul. �

We stress that the proof will use the fact that C 6= ∅.

Proof. We first fix a choice of a singleton inflow, which exists by Example 5.20, and we use
the description of UC

t (A) from (5-8). Via this and Lemma 5.23 the i-j position of UC
t (A)

is an alternating sum of numbers of certain paths of length t from j to i starting with the
total number of paths of length t for k = 0.

We start with the following claims.

Claim 1. UC
t (A) has only non-negative entries.

Proof of the claim. The strategy is to show that for each path of length t the contributions
for each k in the sum now either give 0 or 1. For this purpose, fix a path p of length t. Now
let k be such that m(p) ∈M(t, k).

We first claim that p does not give a contribution to any other m ∈M(t, l) for l ≥ k. This
is clear for l > k, since k is exactly the number of chosen zig-zags in p. For l = k the chosen
zig-zags would need to be at different positions, which is also not possible.

Next, we claim that for l < k there are exactly
(
k
l

)
different m ∈ M(t, l) that count p.

These m are obtained from m(p) by replacing k − l of the occurring Y by X2.
Summing all of this up, we see that for k > 0 the contribution of p to the i-j position of

UC
t (A) is 1−

(
k
1

)
+
(
k
2

)
− . . .+ (−1)k

(
k
k

)
= 0, while for k = 0 the contribution is 1. Thus, in

total, we obtain that UC
t (A) only has non-negative entries, which proves Claim 1.

Claim 2. UC
t (A) = 0 if and only if Γ is a type A graph and C 6= {1}, respectively C 6= {n}.

Proof of the claim. Assume that Γ has a trivalent vertex. Then, for any vertex i, we can
construct a path of arbitrary length that contains no chosen zig-zag for any choice of a
singleton inflow starting at that vertex. This is due to the fact that the trivalent vertex has
two edges that are not chosen for it, which one can use to construct such paths.

Assume Γ is of type An and C 6= {1}, respectively C 6= {n}. Then for any singleton inflow
choice there exists at least one of the following cases: Either there exists a vertex with a
vertex condition which has two neighbors, again allowing to construct an arbitrary long
path without chosen zig-zags. Or both leafs have a vertex condition in which case the edge
incident to one of them is not chosen, and we can construct again an arbitrary long path not
containing a chosen zig-zags.

Finally, we consider the case of a type An graph with C = {1}, the case C = {n} follows by
symmetry. In this case there is a unique singleton inflow. For this singleton inflow there can
not be any path of length ≥ 2n− 1 not containing any chosen zigzag. Hence, UC

t (A) = 0 for
t ≥ 2n− 1, which shows the claim.

Altogether this implies that outside of graph of type An with C = {1}, respectively C = {n},
ZC
� is Koszul by the same argument as for Proposition 5.17.
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The hardest case remains: a type An graph with C = {1}, because the case C = {n} follows
again by symmetry. Observe that there is a unique longest path not containing any chosen
zig-zag, which is of the form i . . . n . . . 1, and which is of length (2n+ 1)− i. Thus, the
matrix UC

(2n+1)−i(A) contains only one non-zero entry in the ith column which is located in

the 1-i position, which shows that this case is also Koszul. �

Remark 5.25. From the proofs of Propositions 5.17 and 5.24 we obtain the length of
a minimal projective resolution for all simple modules, which are given by Chebyshev
polynomials. This shows that ZC

� has infinite global dimension unless Γ is a type An graph

with C = {1}, respectively C = {n}, in which case it has global dimension 2n− 1. N

Example 5.26. If Γ is a type A graph with C = {1} or C = {n}, then the linear projective
resolutions are all finite. This follows from Proposition 5.24 and Theorem B ′. To see this
explicitly (we do the case C = {1}, the other follows by symmetry), we observe that the
columns of the matrices (exemplified in case of the type A4 graph)

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0


t = 2

,


0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0


t = 3

,


1 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0


t = 4

,


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


t = 5

,


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


t = 6

,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


t ≥ 7

together with the starting matrices I for t = 0 and A for t = 1, give the summands in the
corresponding linear projective resolutions. In fact, having these matrices it is easy to write
down the resolutions using the same methods as in Example 5.3. N

The proof.

Proof of Theorem C ′. We combine Propositions 5.17 and 5.24. �
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